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from Palindromi di (Lo)Renzo
by Lorenzo)

dedicated to those who read this dedication,
in particular to G

1lightly she goes from hilltop to valley





Foreword

the moon is more useful that the sun
since at night there is more need of light

(Mullah Nasrudin)

Once (upon a time?) there was a city nestled between the sea and the moun-
tains where the university was divided into faculties. One of these was the
Faculty of Science where various subjects were taught; subjects such as Math-
ematics, Computer Science, Statistics, Physics, Chemistry, Biology, Geology,
Environmental Studies and some other things. These subjects were divided
into such a myriad of courses that one could easily lose count of them. The
only invariant, one of the few things that gave some unity to all of these
areas of study, was the fact that every one of these subjects included some
mathematics in their introductory courses. This meant that all the students
who were enrolled in this faculty would, sooner or later, encounter some of
the notions of linear algebra.

Everyone who taught in the Faculty of Science knew that this material
was at the base of the scientific pyramid and all were conscious of the fact
that no scientist could call himself such if he or she were unable to master
the technical fundamentals of linear algebra. However tradition, mixed with
convenience, had created courses in each of the various departments of the
faculty which contained some basic notions of mathematics but were totally
different from each other. As a consequence, it was perfectly possible for
a student in Biology to be ignorant of certain fundamental facts of linear
algebra which were, however, taught to students of Geology.

Then something unexpected happened. On the day. . . of the year. . . there
was a meeting of some wise professors from the Faculty of Science (and also
from some other Faculties where mathematics was taught). The purpose of
this meeting was to correct the situation described above and, after ample
and articulate discussion (for that is how it is reported in the minutes of that
meeting) it was unanimously decided to assign to a mathematician the task
of writing a book of linear algebra for everyone.
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Some historians claim that the decision was indeed not unanimous and
that the minutes were altered afterwards. Some assert that the writing of that
book was, in fact, proposed by a mathematician and that he was not even
supported by his mathematical colleagues. There are even some revisionist
historians who assert that the meeting never took place! Perhaps the question
needs to be studied further, but one thing is sure: the book was written.

la luna e la terra non sono sole1

(from The Book of Sure Things)

1Some sentences are not translated because the sense would be completely lost.



Introduction

numbers, symbols, algorithms,
theorems,

algorithms, symbols, numbers

(Indrome Pal)

Where does this strange title Linear Algebra for everyone come from? In
what sense does the author mean “everyone”? It is, of course, common knowl-
edge that mathematics is not for everyone. Moreover, it is also often true that
one of the obstacles to the dissemination of mathematics are the mathemati-
cians themselves (fortunately not every one of them). Indeed, some mathe-
maticians love to play the role of gate keepers developing a language which
is abstruse and sometimes incomprehensible even to the experts in their own
field!

But, suppose we asked a professional mathematician to step back a bit
from his habitual way of speaking and write in a more linear fashion? And
suppose we even asked more, for example, that he make his writing lively?
And, since we are asking for so much, suppose we were to ask that the writing
even be entertaining? That would not be an easy job, since as a proverb says
“few sage things are said lightly while many stupid things are said seriously”.

The purpose of this book is to furnish the reader with the first mathemat-
ical tools needed to understand one of the pillars of modern mathematics, i.e.
linear algebra. The text has been written by a mathematician who has tried
to step out of his usual character in order to speak to a larger public. He has
also taken up the challenge of trying to make accessible to everyone the first
ideas and the first techniques of a body of knowledge that is fundamental to
all of science and technology.

Like a good photographer, the author has tried to create a geometric and
chromatic synthesis. Like an able dancer he has tried to merge the solidity of
his steps with the lightness of his movements. And, like an expert horticul-
turist he has tried to always maintain a healthy level of reality. The author
has had success in an endeavor such as this. He has, through his leadership
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of one of the research groups at the University of Genoa, been active in the
development of the programme, called CoCoA (see [Co]), which took the very
abstract ideas of symbolic calculation and made them easy to use.

But, does the author really believe that everyone will read what he has
written? In fact, although the book is declared to be for everyone it is difficult
to imagine, for example, that more than a few retired people or housewives
would be able to read it beyond the first few pages. On the other hand, it
would not be a bad idea for this book to be read carefully by all university
students who have at least one course of mathematics in their programme.

Thus, this book should be read by at least students of statistics, engi-
neering, physics, chemistry, biology, natural science, medicine, law. . . As for
mathematics students. . . Why not? It certainly would not do them any harm
to see the fundamentals of linear algebra presented a bit differently, and in
a more motivated way, than they would probably find in many, so-called,
canonical texts.

Naturally, mathematicians, and in particular algebraists, will observe im-
mediately that the book lacks a formal underpinning. They will notice the
fact that definitions, theorems and proofs, in other words all the formal bag-
gage which permeates modern texts of mathematics, are almost totally absent
from this book. Perhaps they would enjoy definitions like those of Bob Hope,
according to whom

a bank is: the place where they lend you money
if you can prove you don’t need it

or perhaps that of the anonymous author according to whom

modern man is: the missing link
between apes and human beings

The author could find his way out of this a la Hofstadter, saying that the
book contains all the formalism necessary only when it is closed. In fact, this
author thinks that whatever choices one makes should be made very clear at
the outset. In this case, the fundamental choice was that of writing a book
for everyone and thus with a style and language as close as possible to that
which is used everyday.

There is an Indian proverb, which says that an ounce of practice is worth
more than a ton of theory. Hence, another fundamental decision made by the
author was that of proposing hundreds of exercises of varying difficulty to the
reader. Some of these, about 2 dozen in all, require the use of a calculator for
their solution. Let me clarify what I mean: we know that some readers might
be particularly adept at solving problems by hand and get great satisfaction
out of doing so with a system of linear equations with lots of equations and
unknowns. It’s not my intention to deny anyone that pleasure, but, it is best
to understand that such an undertaking is essentially useless.
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We live, today, in an era in which high speed calculators and excellent
programmes are as available to us as pencil and paper. It is best to learn
how to use such things well and, at the same time, absolutely fundamental
to understand how they work – even at the price of contradicting Picasso.

calculators are useless,
they can only give you answers

(Pablo Picasso)

Let’s return, for a moment, to our description of these special exercises. First,
they are all marked with the symbol @ so you will understand immediately
the kind of problem they are. What can you do to solve them? You will not
be left all alone to deal with these problems. In the Appendix, at the end
of this volume, you will find explanations and suggestions for solving these
types of problems and you will also be shown some explicit solutions using
CoCoA (see [Co]). What is CoCoA?

As was already mentioned, CoCoA is a system of symbolic calculation which
has been developed by a group of researchers in the Department of Mathe-
matics of the University of Genoa, led by the author. To find out more about
this system, the reader is invited to read the Appendix but, better yet, to
consult the web page

http://cocoa.dima.unige.it

We now come to the book’s organization. The book is divided into a prepara-
tory part (which contains this introduction and the index), an initial chapter
with introductory material, two mathematically essential parts (each divided
into four chapters) and some concluding remarks. The appendix, of which
we have just spoken, is found in this last part as well as some presumed
conclusions and some bibliographic references. The arrangement of the more
mathematical contents is made so that the initial chapter and the first part
of the book can serve as a very leisurely introduction to the material. Here
the reader is taken by the hand and accompanied gradually through the main
themes of linear algebra.

The most important instrument we will use is the systematic discussion
of examples. In fact, it is even written in fortune cookies that the best gift
one can bestow on others is a good example. The central role is played by
the objects called matrices, which first enter very unassumingly on the scene
and progressively reveal their many facets and their adaptability to situations
and problems which are surprisingly diverse. The reader is brought along to
understand the significance of a mathematical model and of computational
costs. This is the part that is truly for everyone and it was from this that
the title of the book was taken.

The second part is still for everyone, provided. . . the reader has understood
the first part and no longer needs to be accompanied by hand. As in the first
part, the examples still play a major role but the concepts begin to get a bit
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more elaborate. Coming on stage now are characters which are a bit more
complex, at times even spiny like quadratic forms or even illuminating, like
projectors. And the matrices? Matrices continue to play a central role, they
are the pivot of the situation. They are linear objects but they are even well
adapted to model equations of the second degree. Tied to the concept of
orthogonal projection are the so-called projectors, which give us the essential
tool needed for the solution of the famous problem of least squares. To reach
this goal we will need the help of mathematical concepts which are a bit more
sophisticated, such as vector spaces with their systems of generators and their
bases, if possible orthogonal and even better orthonormal and the notion of
the pseudoinverse of a matrix.

We will also highlight the symmetric matrices. Why? Well, some claim
that mathematicians choose the objects they want to study by using aes-
thetic criteria. And indeed, symmetry is an aesthetic choice. But, it more
often happens that certain properties which appear to be only aesthetic are
absolutely crucial for practical applications. This is the case for the symmet-
ric matrices, which are the soul of quadratic forms. Around these objects
(and not only for them) we will, at the end of the book, develop themes and
concepts such as eigenvalues, eigenvectors and invariant subspaces. Although
these objects have some strange sounding names, they are of great use and
that will begin to become clear towards the end of the book.

As I said earlier, in the second part of the book we continue to emphasize
concepts and examples, but not proofs and not the formal aspects of the
subject.

as I said earlier, I never repeat myself

And if someone wants to go further? No problem. This is one of the intentions
of the book. But, there is a certain warning that comes with this. It’s enough
to wander around in a mathematics library or navigate the ocean that is
the Internet to find an impressive quantity of material. In fact, as I said
earlier (and at the risk of repeating myself), linear algebra is one of the
basic underpinnings of science and technology and thus has stimulated, and
continues to stimulate, many authors. Consequently, the going gets a lot
tougher and is certainly not for everyone.

We now turn to some aspects of style in the book, in particular on our
choices with the notation. In the Italian tradition, decimal numbers are writ-
ten using commas as separators, for example 1, 26 (one comma twenty six)
with the period being reserved as a separator for very large numbers, e.g.
33.200.000 (thirty-three million two hundred thousand). In the Anglo-Saxon
tradition one does the opposite, and thus $2, 200.25 means two thousand two
hundred dollars and twenty-five cents. What should we use? The impulse of
nationalistic pride should make us opt for the first solution. But, the fact is
that our lives are lived in contact with mechanical calculators and thus con-
ditioned by software protocols which use English as the base language. The
choice thus falls on the second method. Thus, when there are strong practical
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or aesthetical reasons to use a separator we will write, for example, 1.26 to
say ‘one unit and 26 hundreths’ and we will write 34, 200 to say thirty-four
thousand two hundred.

Another obvious aspect is the presence in the book of self-referential
phrases, aphorisms, jokes, citations and palindromes, and the reader will
be immediately aware that in many cases, they are written on the right side
of the page, beginning with lower case letters and finishing without punctua-
tion. Why? The author believes that even a mathematics book should furnish
signs and indications and not only technical information. These phrases are
like falling stars which appear out of the blue and immediately disappear,
leaving only an incomplete sign or sensation that the reader is encouraged to
ponder.

And now I’ll conclude with a warning. The book continually seeks to in-
volve the reader in the discussion. There are frequent phrases of the type
– the reader will have to be satisfied with only a partial response. . .
– it won’t be difficult for the reader to interpret the significance of. . .
I hope the female readers are not offended by my use of the pronoun “he”.
The choice is not an anti-feminist statement! In fact, it was only dictated
by my desire not to make the text too ponderous. Let me be clear then, the
reader is, for me, he or she who is reading this book. Finally, to really conclude,
enjoy yourself with the following little problem and then “Good reading to
everyone!”

little problem: complete the following sequence with the two missing symbols
ottffsse...

Genova, 9 October 2006 Lorenzo Robbiano
Genova, 8 July 2010 Anthony V. Geramita
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Numerical and Symbolic Computations

two thirds of Italians don’t understand fractions
the other half are not interested

Suppose that a reader, perhaps intrigued by the title, wanted to see imme-
diately if the book was really for everyone and consequently arrived here
without having read neither the Forward nor the Introduction. I believe that
such a reader would have made an error and missed an essential aspect of the
spirit of the book. I would strongly advise such a reader to return and read
those parts of the book. However, since the reader is at liberty to do as he or
she chooses, and since I personally know many readers who have the habit
(may I say the bad habit?) of not reading introductions, I have decided not to
mislead even those readers and so I will begin with this very short chapter,
a typical Chapter 0, in which one does some simple computations and then
discusses the results obtained by those computations.

Now, even if the title numerical and symbolic calculations is very high
sounding, in fact we deal here with some questions addressed at the high
school level. What do we mean when we write ax = b? How does one ma-
nipulate the expression ax = b? What does it mean to solve the equation
ax = b?

If the reader thinks that we are dealing with trivialities it would be good
to pay attention nonetheless because sometimes under apparently calm wa-
ters there move dangerous under currents; underestimating the significance
of these questions could be fatal. Not only that, but reading now with max-
imum concentration will be very useful in giving the reader the confidence
to deal with important concepts that will be fundamental in what follows.
In addition, computations, numbers and symbols are the basic ingredients of
mathematics and the reader, even if he or she doesn’t aspire to become a
professional mathematician, will do well to familiarize themselves with these
ideas.

Robbiano L.: Linear Algebra for everyone
c© Springer-Verlag Italia 2011



2 Numerical and Symbolic Computations

The equation ax = b. Let’s try to solve it

In elementary school we learn that the division of the number 6 by the number
2 gives the exact answer the number 3. One can describe this fact mathemat-
ically in various ways, for example writing 6

2
= 3 or 6 : 2 = 3 or saying that 3

is the solution of the equation 2x = 6 or that 3 is the solution of the equation
2x− 6 = 0.

Let’s recall a few things. The first thing is that the expression 2x means
2×x because of the convention of not writing the symbol for the product when
it is not strictly necessary. The second thing is that the expression 2x = 6
contains the symbol x, which represents the unknown of the problem, or put
another way, the number which when multiplied by 2 gives us 6 as a result,
and also contains the two natural numbers 2, 6.

We observe that the solution 3 is also a natural number but that this is
not always the case. It would be enough to consider the problem of dividing
the number 7 by the number 4. This problem’s mathematical description
is the same as that above, in other words one tries to resolve the equation
4x = 7, but this time we notice that there does not exist a natural number
which when multiplied by 4 gives 7 as a result. At this point there are two
directions in which we can go.

The first is that of using the algorithm we learned as children for dividing
two natural numbers. This direction brings us to the solution 1.75, a so-called
decimal number. The second direction is that of inventing a larger place,
namely that of the rational numbers. Taking this second direction we arrive
at the solution 7

4 . We observe that 1.75 and 7
4 are two different representations

of the same mathematical object, namely the solution to the equation 4x = 7.
But, the situation can be much more complicated. Let’s try to solve a

very similar problem, namely 3x = 4. While the solution 4
3 can be found

easily and quickly in the rational numbers, if we try to use the division
algorithm we enter into an infinite cycle. The algorithm produces the number
1.3333333. . . and one notes that the symbol 3 is repeated infinitely often,
since at each iteration of the algorithm we find ourselves in exactly the same
situation as before. We can, for example, finish by saying that the symbol 3
is periodic and write (making it a convention) the result as 1.3 or as 1.(3).
Another way to take care of this situation is simply to exit from the cycle
after a fixed number of times (say five). In that case we conclude saying that
the solution is 1.33333. There is, however, a big problem. If we transform the
number 1.33333 into a rational number we find 133333

100000
, which is not equal to

4
3 . In fact, one has

4
3
− 133333

100000
=

4× 100000− 3× 133333
300000

=
400000− 399999

300000
=

1
300000

and although 1
300000 is a very small number, it is not zero.

Although it might be useful to work with numbers that have a fixed number
of places after the decimal one pays the price that the result is not always
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exact. Why then don’t we always work with exact numbers, for example with
rational numbers?

For the moment the reader will have to be content with a partial answer,
but one which suggests the essence of the problem.

– One reason is that working with rational numbers is very costly from the
point of view of computation.

– Another reason is that we don’t always have rational numbers at our
disposal as they were in our problems above.

As for the first reason, it’s enough to think about the difficulty that a calcula-
tor has in recognizing the fact that the following equivalent fractions, 4

6
, 6

9
, 2

3
,

represent the same rational number.
As for the second reason, suppose (for example) that we wanted to find the

relationship between the distance from the earth to the sun and the distance
from the earth to the moon. Calling b the first distance and a the second
distance, the equation that represents our problem is our old friend ax = b.
But, no-one would contend that it was reasonable to have exact numbers
to represent such distances. The initial data of our problem are necessarily
approximate numbers. In this case we would consider such a difficulty as
impossible to eliminate and we would take the appropriate precautions.

The equation ax = b. Be careful of mistakes

Let’s return to our equation ax = b. In terms of the problem giving rise to
the numbers a and b, let’s think about whether we want exact solutions or
approximate solutions. As we saw above, 4

3 is an exact solution of 3x = 4,
or equivalently, of 3x − 4 = 0, while 1.33333 is an approximate solution
which differs from the exact solution only by 1

300000
or, using another very

common notation, by 3.3 · 10−6. Taking also into account the fact we saw in
the preceding section, namely that it is not always possible to operate with
exact numbers, one begins to think that a tolerably small error is not so bad.
But, real life is full of obstacles.

Suppose that our initial data were a = 1
300000

, b = 1. The correct solution
is x = 300000. If we made an error in the initial valuation of a and said
a = 2

300000, then our error was only 1
300000, something we recently declared

to be a “tolerably small error”. But now our equation ax = b has solution
x = 150000, which differs from the correct solution by 150000.

What happened? Simply put, if one divides a number b by a very small
number a, the result is very big; thus if one alters the number a by a very small
amount, the result is changed by a very large amount. This problem, which
we have to keep in front of us all the time when we work with approximate
quantities, has given rise to a large sector of mathematics which is called
numerical analysis.
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The equation ax = b. Let’s manipulate the symbols

The discussion we have just had about the quantities a and b and about
approximate solutions has nothing to do with purely formal, or symbolic,
manipulations. For example, little kids learn that starting with the equation
ax = b, one can write an equivalent equation by moving b to the left of the
equality and changing its sign. This is an example of a symbolic computa-
tion, more precisely of the use of a rewrite rule.

Just exactly what does that mean? If α is a solution of our equation then
we have the equality of numbers aα = b and thus the equality aα−b = 0. This
observation permits us to conclude that the equation ax = b is equivalent to
the equation ax− b = 0, in the sense that they have the same solutions. The
transformation of ax = b into ax − b = 0 is a manipulation that is purely
symbolic, independent of the nature of the problem. This would be a good
time to comment on the fact that such a manipulation is not always valid.
If, for example, we are working with natural numbers, the expression 2x = 4
cannot be transformed into −4 + 2x = 0, since −4 is not a natural number.

Now I would like us to take a leap and solve the equation independent of
the values of a and b. In other words, we would like to find an expression for
the solution of ax = b (or equivalently ax− b = 0) which depends only on a
and b and not on any particular values that we might attribute to them.

Put in that generality, it’s not really possible. For example, what happens
if a = 0? In that situation there are two possible cases, depending on whether
b �= 0 or b = 0. In the first case we can say definitely there are no solutions
because there is no number which when multiplied by zero produces a num-
ber that is different from zero. In the second case, instead, all numbers are
solutions because every number when multiplied by zero gives zero.

It thus seems that when a = 0 the equation ax = b behaves in two ex-
tremely different ways. The situation becomes more manageable if we suppose
that a �= 0; in that case we can immediately conclude that b

a is the unique
solution. But, can we be sure? Didn’t we already say in the preceding sec-
tion that the equation 4x = 7 does not have integer solutions? Certainly 4 is
different from 0!

The problem is the following. In order to conclude that if a �= 0, then b
a

is the solution to ax = b, we have to know that b
a makes sense. Without

entering into all the algebraic refinements that this questions implies, we’ll
limit ourselves to observing that the rational numbers, the real numbers
and the complex numbers have the property that if a is a rational, real or
complex number different from zero, then it has an inverse (which in algebra
one calls a−1). For example, the inverse of 2 in the rational numbers is 1

2 ,
while in the whole numbers the inverse doesn’t exist.

This kind of argumentation has an exquisitly mathematical nature, but its
importance for applications is revealing itself to be of increasing importance.
Current technology actually puts at our disposal hardware and software with
which we can manipulate data symbolically. There is a new area of mathe-
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matics concerned with these things; and it is emerging as a strong area of
study. It is known as symbolic computation but also called computational
algebra or computer algebra (see [R06]).
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Exercises

Before you begin to consider the problems given in the exercises, permit me to
offer some advice. The reader should remember that, as well as the techniques
learned in each section, it is always of fundamental importance to use common
sense when approaching a problem. I’m not kidding! In fact, it often happens
that university students concentrate so hard on trying to use the formulas
they have learned in the course, that they don’t realize that a small dose of
common sense is often what is needed to solve the problems. Even if that
common sense is not enough, it will (in any case) help.

Exercise 1. What power of 10 is a solution to 0.0001x = 1000?

Exercise 2. Consider the equation ax−b = 0, where a = 0.0001, b = 5.

(a) Find the solution α.
(b) By how much do you have to alter a in order to have a solution that

differs from α by at least 50000?
(c) If p is a positive number that is smaller than a, can you produce a

bigger error by substituting for a the number a − p or the number
a + p?

Exercise 3. Construct an example of an equation of type ax = b, in
which an error in the coefficients hardly makes any difference in the error
of the solution.

Exercise 4. Despite the fact that the inverse of 2 doesn’t exist in the
integers, why is it possible to solve (with integers) the equation 2x−6 = 0?

Exercise 5. Are the two equations ax−b = 0 and (a−1)x−(b−x) = 0
equivalent?

Exercise 6. Consider the following equations (with a parameter) of type
ax − b = 0.

(a) Find the real solutions of (t2 − 2)x− 1 = 0 in terms of t in Q.
(b) Find the real solutions of (t2 − 2)x− 1 = 0 in terms of t in R.
(c) Find the real solutions of (t2 − 1)x− t + 1 = 0 in terms of t in N.
(d) Find the real solutions of (t2 − 1)x− t + 1 = 0 in terms of t in R.
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Systems of Linear Equations and Matrices

linear hypotheses in a non-linear world
are highly dangerous

(Adam Hamilton)

In the introductory chapter we warmed up the engines by studying the equa-
tion ax = b. What will we do to follow up on that? I will tell you right away
that in this chapter we will deal with transportation problems and chemical
reactions, diet manipulations, totocalcio tickets, architectural constructions
and meteorology. How is that possible? Am I changing the scope of the book?
On the contrary. The fascination of even not very sophisticated mathematics
lies precisely in its ability to bring together topics which, at the outset, seem
very different.

In fact, we will see many examples that will appear totally different, but
we will discover that they can all be united by a single, simple mathematical
model, the so-called system of linear equations. It will then be natural to ask
how one represents a system of linear equations and at that point the leading
ladies enter the scene, the objects that will play the primary role right up to
the end, the matrices.

As one of the first results of our investigations, we will see how matrices
allow us to use the formalism Ax = b for systems of linear equations. This
looks a lot like the familiar equation ax = b with which we began. I think we
can all agree on this.

The more expert reader may observe, however, that the world in which we
live is not, in general, linear, and that life is rife with obstacles. That’s true,
but if one learns to look with care, one discovers many linear phenomena
even where one least expects them. Are you curious to know where? A little
patience and you will find out, but you will have to be a collaborator in
this venture. For example, you will have to learn how to deal not only with
systems of linear equations and matrices but also with vectors.

Robbiano L.: Linear Algebra for everyone
c© Springer-Verlag Italia 2011
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1.1 Examples of Systems of Linear Equations

First let’s look at some examples. The first is our good friend from the pre-
ceding chapter.

Example 1.1.1. The equation ax = b
As I said, the first example puts the equation ax = b in this new context
which we are calling systems of linear equations.

The second example will be an old friend to those who have studied ana-
lytic geometry.

Example 1.1.2. The line in the plane
The linear equation ax + by + c = 0 represents a line in the plane. In a little
while (in fact at the end of Section 4.2) we will make clear what we mean
when we say that an equation represents a geometric object.

And if you want to intersect two lines in the plane?

Example 1.1.3. Intersection of two lines{
ax +by +c = 0
dx +ey +f = 0

You’ll notice that we need lots of letters! But, let’s not allow this to bother
us now and let’s resolutely move on to see something more interesting.

Example 1.1.4. Transportation
Suppose there are two factories F1, F2 which produce, respectively, (120, 204)
automobiles. Suppose further that the factories need to move their cars to
two car dealers, D1, D2 who want, respectively, 78 and 246 cars. Notice that
in this situation we have

120 + 204 = 78 + 246 = 324

and thus we are in a position to make a transportation plan. For example,
if we call x1, x2 the number of cars that factory F1 will transport to deal-
ers D1, D2 respectively, and y1, y2 the number of cars that factory F2 will
transport to the dealers D1, D2 respectively, then we must have⎧⎪⎪⎨

⎪⎪⎩
x1 + x2 = 120
y1 + y2 = 204
x1 + y1 = 78
x2 + y2 = 246

This is a system of linear equations. Our transportation problem has been
translated into a mathematic model; in other words this system of linear
equations has captured the mathematical essence of the problem.
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There are 4 equations and 4 unknowns. Can we hope that there is a solution
or even many solutions? For the moment we don’t have the technical tools
to allow us to answer the question, however, by trial and error, we find that
x1 = 78, x2 = 42, y1 = 0, y2 = 204 is a solution. Not only, but also x1 = 70,
x2 = 50, y1 = 8, y2 = 196 is a solution and even x1 = 60, x2 = 60, y1 = 18,
y2 = 186 is a solution. It seems clear that there are many solutions. How
many? And why is it important to know all of the solutions?

We may suppose that the unit cost of transporting the cars from the
factories to the dealers are not the same, for example, suppose the cost of
transporting a car from factory F1 to dealer D1 is 10 Euros, from factory F2

to dealer D2 is 9 Euros, from F2 to D1 is 13 Euros and from F2 to D2 is
14 Euros. The three solutions we noted above would then have a total cost
respectively of

10× 78 + 9× 42 + 13× 0 + 14× 204 = 4, 014 Euro

10× 70 + 9× 50 + 13× 8 + 14× 196 = 3, 998 Euro

10× 60 + 9× 60 + 13× 18 + 14× 186 = 3, 978 Euro

The third solution thus is the cheapest. But, among all the possible solutions
is that one really the cheapest? In order to answer that question (and others
like it) it seems clear that we really need to know all the solutions and we
will shortly be able to find them all. In particular we will understand that
the answer to the question we just posed (i.e. is it really the cheapest?) will
be decidedly no.

Example 1.1.5. A chemical reaction
Combining atoms of copper (Cu) with molecules of sulfuric acid (H2SO4),
gives rise to molecules of copper sulphate (CuSO4), water (H2O) and sulphur
dioxide (SO2). We would like to determine the number of molecules which
take part in this chemical reaction. We will indicate with x1, x2, x3, x4, x5

respectively, the number of molecules of Cu, H2SO4, CuSO4, H2O and SO2.
The chemical reaction is then expressed with an equality of the type

x1Cu + x2H2SO4 = x3CuSO4 + x4H2O + x5SO2

In reality the equality doesn’t completely describe the situation since the
chemical reaction is oriented, in other words it starts from the left and ar-
rives at the right. On the other hand, the constraint is that the number of
atoms of every element has to be the same before and after the reaction (in
mathematese one would say that the number of atoms of each element is an
invariant of the chemical reaction). For example, the number of atoms of
oxygen (O) is 4x2 from the left side of the equality and 4x3 + x4 + 2x5 from
the right side and so we must have 4x2 = 4x3 + x4 + 2x5.
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Thus, the five numbers x1, x2, x3, x4, x5 are constrained by the following
relations ⎧⎪⎪⎨

⎪⎪⎩
x1 − x3 = 0

2x2 − 2x4 = 0
x2 − x3 − x5 = 0

4x2 − 4x3 − x4 − 2x5 = 0

This is a system of linear equations. It is a mathematical model of the above
mentioned chemical problem. In other words we have captured the essence of
the mathematical problem posed by the invariance of the number of atoms
of each element present both before and after the reaction (i.e. on the left
side and on the right side of the equation).

The natural next step is to solve the system of equations. We’ve not yet
seen how to do that, but in this case we can try to make some experimental
calculations. The first equation tell us that x1 = x3 and the second that
x2 = x4. Thus, in the third and fourth equations we can substitute x3,
whenever there is an x1 and an x4 whenever there is an x2. In this way we
get x4 − x3 − x5 = 0 and 3x4 − 4x3 − 2x5 = 0. From the first of these we
see that x3 = x4− x5 and we use that to substitute for x3 in the second and
thus obtain −x4 + 2x5 = 0, and hence the equality x4 = 2x5.

Going back to our previous substitutions we get x3 = x5 and so, reconsid-
ering the first two equations we get x1 = x5, x2 = 2x5.

This discussion has, for the moment, a very empirical character and we will
see later how to make it more rigorous. For now, let’s be satisfied to note that
the solutions to our system may be written in the form (x5, 2x5, x5, 2x5, x5)
with x5 being totally arbitrary. We thus have a case in which there are an
infinite number of solutions except that the only ones which interest us are
those for which the solutions are natural numbers (it wouldn’t make sense to
speak of −2 molecules) and we would like the solution to be as small as pos-
sible. This last request is similar to that already noted in the transportation
problem. In our case it is easy to see that there is such a solution and it is
(1, 2, 1, 2, 1). In conclusion, the proper chemical reaction is the following

Cu + 2H2SO4 = CuSO4 + 2H2O + SO2

which should be read in the following way: a one atom molecule of copper
and two molecules of sulfuric acid react chemically to give rise to a molecule
of copper sulfate, two molecules of water and one molecule of sulfur dioxide.

Example 1.1.6. The diet
Suppose we want to prepare a breakfast with butter, ham and bread in such
a way as to have available 500 calories, 10 grams of protein and 30 grams of
fat. A chart shows the number of calories, the amount of protein (expressed
in grams) and the amount of fat (expressed in grams) furnished by a gram
of butter or ham or bread.
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butter ham bread
calories 7.16 3.44 2.60
protein 0.006 0.152 0.085

fat 0.81 0.31 0.02

If we denote by x1, x2, x3 respectively, the number of grams of butter, ham
and bread, then what we are looking for is nothing more than the solution
to the system of linear equations⎧⎨

⎩
7.16 x1 + 3.44 x2 + 2.60 x3 = 500

0.006 x1 + 0.152 x2 + 0.085 x3 = 10
0.81 x1 + 0.31 x2 + 0.02 x3 = 30

Again we will have to be a bit patient with this problem. We will see, in a
bit, how we can resolve this system. In the meantime, probably best not to
be tempted into eating too much.

Example 1.1.7. The bridge
A bridge is to be built to connect the two sides of a river which are at different
levels, as indicated in the figure. One assumes that the profile of the bridge is
parabolic and that the parameters indicated by the architect are p1, p2, c, �,
where: p1 represents the slope of the bridge at the point A where the bridge
connects to the first shore of the river, p2 represents the slope of the bridge
at the point B where the bridge connects to the other shore, c represents the
height of the first shore at the point where the bridge is attached there and
� represents the width of the river bed underneath the bridge.
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The problem is to determine the maximum height of the bridge as a func-
tion of the parameters mentioned above. In order to set up the solution we
must use some notions of analytic geometry which we will assume are known.

If we fix the orthogonal cartesian axes as in the figure, the generic equation
of a parabola is of the form y = ax2 + bx+ c. The coefficient c is exactly that
which we have already called c, since it is the intersection of the parabola with
the y axis and that point has coordinates (0, c). The point A has abscissa 0,
the point B has abscissa �; the first derivative of ax2 + bx + c with respect
to x is 2ax+b and thus has value b at the point A, and 2a�+b at the point B.
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Consequently we have p1 = b, p2 = 2a� + b. In order to determine the value
of a, b, and thus find the equation of the parabola, we must solve the system{

b − p1 = 0
2a� + b − p2 = 0

in which a and b are the unknowns and p1, p2, � are the parameters. Naturally,
in this case the solution is easy to find and we have b = p1, a = p2−p1

2� and
the equation of the parabola is thus

y =
p2 − p1

2�
x2 + p1x + c

At this point we can observe that the height of the shore at the point B, that
is the ordinate of B is fixed and equal to p2−p1

2�
�2 +p1�+ c, that is p1+p2

2
�+ c.

Setting the first derivative of the equation of the parabola equal to 0 one
has 2 p2−p1

2� x+p1 = 0, from which we deduce x = �p1
p1−p2

and thus the ordinate
of the maximum point

y =
p2 − p1

2�
(

�p1

p1 − p2
)2 + p1

�p1

p1 − p2
+ c

which we can simplify to

y =
�p2

1

2(p1 − p2)
+ c

The parametric solution allows us to study the problem by varying the
initial data.

We have thus seen many examples of systems of linear equations which can
be adapted to describe many diverse situations. There is one characteristic
which unites these examples, and that is the fact that all are systems of
linear equations. But, what exactly is a system of linear equations? This
is an important question and merits a prompt answer. The next section will
prepare the instruments which will allow us to answer this question.

1.2 Vectors and Matrices

Two types of mathematical objects are of fundamental importance in what
follows, the vectors and the matrices. Thus, before responding to the ques-
tion which we have left up in the air, let’s consider some significant examples.

Example 1.2.1. Velocity
The idea of vector used in physics is well known. They are used, for example,
to express force, acceleration and velocity. We’ll consider these examples a
bit ahead, but for now it will suffice to say that a velocity vector is written as
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v = (2,−1) where the meaning is that its horizontal component is 2 units
of measure, e.g. meters per second, while the vertical component is -1 unit of
measure. I repeat, we will consider this concept in Chapter 4. Let’s live with
this situation for a while (not a long while).

Example 1.2.2. The totocalcio ticket
A completely different kind of example is afforded by the totocalcio lottery
ticket. It is an example of a completely different kind of vector, which can be
represented with an ordered sequence of numbers and symbols, e.g.

s = (1, X, X, 2, 2, 1, 1, 1, 1,X, X, 1, 1)

Example 1.2.3. Temperature
Let N, C, S be three Italian locations, one in the north, one in the center and
one in the south. Suppose that information has been kept about the median
temperature in those locations for the last 12 months. How do you imagine
such information is kept? One writes⎛

⎜⎝
J F M A M J Jul A S O N D

N 4 5 8 12 16 19 24 25 20 16 9 5
C 6 7 11 15 17 24 27 28 25 19 13 11
S 6 8 12 17 18 23 29 29 27 20 14 12

⎞
⎟⎠

and then one surely has a clear view of all the available information. But,
there is an overabundance of data, a certain lack of homogeneity in it.

If we denote the three locations with the symbols L1, L2, L3 and the
months of the year with the symbols M1, . . . , M12, then we don’t need ei-
ther the first row or the first column of the matrix above. It would be enough
to write ⎛

⎝ 4 5 8 12 16 19 24 25 20 16 9 5
6 7 11 15 17 24 27 28 25 19 13 11
6 8 12 17 18 23 29 29 27 20 14 12

⎞
⎠

In fact, for example, the number 27 written in boldface, which we find in
the second row, refers to the second location, L2, i.e. to the central location
and since it lies in the seventh column it refers to the seventh month, i.e. the
month of July. The advantages are the following:

– the display is a bit smaller;
– the data in the table are homogeneous (temperature).

We can thus consider the vectors and the matrices as containers of nu-
merical information. Taking another look at the preceding examples, a nat-
ural question comes to mind: are vectors only special matrices? In order
to answer this, let’s take another look at the Example 1.2.2. We’ve indi-
cated with s = (1, X, X, 2, 2, 1, 1, 1, 1, X,X, 1, 1) a particular totocalcio ticket,
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put another way, we have used the vector s to contain the thirteen symbols
1, X, X, 2, 2, 1, 1, 1, 1,X, X, 1, 1. Naturally we can consider s as a matrix with
only one row, but someone might say that usually in a totocalcio ticket the
symbols are written in a single column⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
X
X
2
2
1
1
1
1
X
X
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We’ll close this discussion, for the moment, noting that a vector may be seen
both as a row matrix or as a column matrix because the information we are
encoding is the same. It’s useful to know that the usual convention is that
vectors are viewed as column vectors. Nevertheless, it is worthwhile to clearly
state that in mathematics vectors and matrices are considered as different
entities and then when one speaks of row vectors or column vectors, one is
really speaking of a row matrix or a column matrix that represents the vector,
but they are not the same thing as the vector. Nevertheless, in what follows
we will often make the identification mentioned above.

1.3 Generic Systems of Linear Equations and
Associated Matrices

We are finally ready to answer the question left up in the air at the end
of Section 1.1. Recall that the question was: just what is a system of linear
equations? Let’s consider, for simplicity, the case of a single equation, for
example x − 3y = 0. What do we notice? The principal feature is that the
unknowns x, y appear in the expression with exponent one. But that’s not
all, in fact it’s also the case that in the expression xy − 1 and even in the
expression ex− 1, the unknowns appear with exponent one. We have to be a
bit more technically precise and the exact definition is the following:

A linear expression is a polynomial expression in which all the monomials
are of degree less than or equal to one.

That description excludes the expression ex − 1, which is not a polynomial
and also excludes the expression xy−1 because the monomial xy has degree 2.
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An example of a linear equation is x− 2
3y − 1 = 0 and the generic linear

equation with one unknown is our old friend ax− b = 0. Instead of the word
unknown algebraists often use the word indeterminate.

Let’s look at an example that everyone knows. In a square with side �, the
perimeter p is given by the expression p = 4�, while the area A is given by the
expression A = �2. We observe immediately that �2 is not linear, since the
exponent of � is 2. In fact, such an expression is called quadratic. The prac-
tical consequences are very obvious: if, for example, we double the side, the
perimeter is doubled (linear effect) while the area is quadrupled (quadratic
effect).

How does one make a generic system of linear equations? But, before
we start, we should think about the meaning of the word generic. We have
already observed that in order to deal with problems, even of very different
types, it is easy to find oneself with a system of linear equations. These sys-
tems of equations represent that which is commonly called a mathematical
model of the problem. And even if the problems are completely different,
once their model is that of a system of linear equations, they can all be treated
in the same way. This is the real strength of mathematics!

But, in order to unify the treatment it is opportune to find the right
language. For example, the first problem to deal with is that of deciding how
to write a generic system of linear equations so that every system of linear
equations can be seen as a particular case of that system. We will have to use
some symbols, both for the number of rows and for the number of unknowns,
and also for the coefficients and the unknowns. In the same way that we
used ax = b to describe a generic linear equation with one unknown, we will
(using both letters and indices) find a way to write the generic system of
linear equations, which for convenience we will denote by S. Let’s see how
we describe S. ⎧⎪⎨

⎪⎩
a11x1 + a12x2 + · · ·+ a1cxc = b1

a21x1 + a22x2 + · · ·+ a2cxc = b2

· · · · · · · · · · · · · · · · · · · · · · · · · · · = · · ·
ar1x1 + ar2x2 + · · ·+ arcxc = br

At first glance this all looks a bit mysterious, but let’s try to analyze it
attentively. Let’s start with the question: what does r mean? It’s the name
given to the number of rows, in other words to the number of equations.
What about c? It’s the name given to the number of columns, in other words
to the number of unknowns. Why have we put a double index alongside the
coefficients? The reason is that this artifice allows us to identify the coefficient
in an unambiguous way. For example a12 is the name of the coefficient of x2 in
the first equation, ar1 is the name of the coefficient of x1 in the r-th equation,
and so on. Inasmuch as we are at a rather abstract level, let’s use that as
an excuse to mention that mathematicians use the name homogeneous
system of linear equations for such a system in which all the constant
terms b1, b2, . . . , br are zero.
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Let’s try to see if we have actually succeeded in describing every system of
linear equations. Let’s consider, for example, the following system of linear
equations having two equations and four unknowns{

5x1 + 2x2 − 1
2
x3 − x4 = 0

x1 − x3 + 12
5

x4 = 9

Let’s try to identify it as a particular case of S. We immediately see that
a11 = 5, a12 = 2, a13 = −1

2
, a14 = −1, b1 = 0 and so on. But, what’s

happened to a22? Naturally, a22 = 0 and thus we didn’t write the term 0x2

in the second equation. Notice that, in this example, we have r = 2 and c = 4.
Let’s go back and look at the examples in Section 1.1. We will see that

one does not always use the general scheme S because there might be special
reasons not to do so. In Example 1.1.2, instead of writing a11x1 +a12x2 = b1,
we wrote ax + by + c = 0. That seems very different, but let’s look closely at
the differences.

The most noticeable thing is that we haven’t used the double indices. Why
not? The reason should be clear. If the system consists of only one single
equation it’s not necessary to use an index to indicate the unique row. But,
in fact, we haven’t even used the column index since that wasn’t necessary
either. Since we had to name only three coefficients we choose to use a, b
and c instead of a1, a2 and a3. Finally we wrote ax + by + c = 0 instead of
ax+ by = −c, but the fact that we could do this was already discussed in the
introductory chapter.

In Example 1.1.4 we used a different strategy for naming the unknowns. If
you recall, we used x1 and x2 to indicate the number of cars made by factory
F1 that were sent, respectively, to car dealers D1, D2 and by y1, y2, the
number of cars made by factory F2 and sent to, respectively, the car dealers
D1, D2. If we wanted to generalize this example, the non-standard choice
that we made above would create some difficulties and, in fact, Exercise 5 is
there precisely so that you can appreciate this observation.

Let’s return to the fundamental problem of identifying a system of linear
equations, and thus let’s go back to the generic system S

⎧⎪⎨
⎪⎩

a11x1 + a12x2 + · · ·+ a1cxc = b1

a21x1 + a22x2 + · · ·+ a2cxc = b2

· · · · · · · · · · · · · · · · · · · · · · · · · · · = · · ·
ar1x1 + ar2x2 + · · ·+ arcxc = br

Once we have decided to use r to denote the number of equations, c to denote
the number of unknowns and, moreover, to call the unknowns of the system
x1, x2, . . . , xc we realize that we have done something very suggestive. For
example, we could have called m the number of equations, n the number of
unknowns and y1, y2, . . . , yn the unknowns themselves. Having done that we
would not have changed anything (apart from the physical appearance of the
system itself). What then really characterizes the system S?
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The answer is that the characterizing aspects of the system S are
the coefficients aij and bj, as we vary i from 1 to r and j from 1 to c. To
make this concept clearer let’s consider the following two systems of linear
equations

{
x1 + x2 − x3 = 0
x1 − 2x2 + 1

4x3 = 1
2

{
y1 +y2 −y3 = 0
y1 −2y2 +1

4y3 = 1
2

In this case we are really looking at the same system written in two different
ways. Now let’s consider the following two systems of linear equations

{
x1 + x2 − x3 = 0
x1 − 2x2 + 1

4x3 = 1
2

{
x1 + 2x2 − x3 = 0
x1 − 2x2 + 1

4x3 = 1

In this case we are really looking at two different systems, even if we have
used the same names for the unknowns.

It starts to become clear that the information in the system S is totally
contained in the coefficient matrix

A =

⎛
⎜⎜⎝

a11 a12 . . . a1c

a21 a22 . . . a2c
...

...
...

...
ar1 ar2 . . . arc

⎞
⎟⎟⎠

and in the vector of constant terms

b =

⎛
⎜⎜⎝

b1

b2
...
br

⎞
⎟⎟⎠

or, if you prefer, in the augmented matrix

B =

⎛
⎜⎜⎝

a11 a12 . . . a1c b1

a21 a22 . . . a2c b2
...

...
...

...
...

ar1 ar2 . . . arc br

⎞
⎟⎟⎠

We have thus discovered the following fact.
The information of a system of linear equations can be com-
pletely expressed with the use of matrices and vectors.

Since from now on we will be using the language of matrices quite a bit, it
would be good to establish some conventions about how (and what) we will
call things. For example, the elements that appear in a matrix are called the
entries. So a12, b1, . . . are entries of the matrix B.
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At this point it should be clear that when we speak of a generic matrix with
r rows and c columns we mean the following

A =

⎛
⎜⎜⎝

a11 a12 . . . a1c

a21 a22 . . . a2c
...

...
...

...
ar1 ar2 . . . arc

⎞
⎟⎟⎠

We say that
− the matrix A is of type (r, c), to indicate that it has r rows and c columns;
− the matrix A is square of type r to say that the matrix has both r rows

and r columns.

Another way to represent a generic matrix is the following

A = (aij), i = 1, . . . , r, j = 1, . . . , c

which captures, in symbols, the following meaning

The matrix A has as generic entry the number aij, which has a variable
double index. The row index i varies from 1 to r while the column index j
varies from 1 to c.

Notice that having written the generic matrix in this way we have not been
precise about the exact nature of the entries. If we want to specify, for exam-
ple, that the entries are rational numbers, then we can write

A =

⎛
⎜⎜⎝

a11 a12 . . . a1c

a21 a22 . . . a2c
...

...
...

...
ar1 ar2 . . . arc

⎞
⎟⎟⎠ aij ∈ Q

or
A = (aij), aij ∈ Q, i = 1, . . . , r, j = 1, . . . , c

We conclude with a mathematical refinement. An extremely synthetic way
of expressing the fact that A is a matrix with r rows, c columns and rational
entries is the following

A ∈Matr,c(Q)

Notice that in order to give some significance to what we just wrote, mathe-
maticians invented a name.

Matr,c(Q) is the name given to the set of all the matrices with r rows, c
columns and rational entries.
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1.4 The Formalism of Ax = b

Let’s reexamine, one more time, our system of linear equations S. As we
have in part already noted, the information contained in S can be divided
into three pieces of data, of which two are the coefficient matrix A and the
vector or column matrix of the constant terms b, and the third is the vector
or column matrix of the unknowns

x =

⎛
⎜⎜⎝

x1

x2
...

xc

⎞
⎟⎟⎠

On seeing this, a mathematician is tempted to imitate the equation ax = b
that we discussed in the introductory chapter, and write the system S as
Ax = b. How could that be possible?

In order to make sense out of what we just wrote we have to invent a
product Ax, that will give us the following column matrix as a result (notice
that the result should have only one element in each row)

⎛
⎜⎝

a11x1 + a12x2 + · · ·+ a1cxc

a21x1 + a22x2 + · · ·+ a2cxc

· · · · · · · · · · · · · · · · · · · · · · · ·
ar1x1 + ar2x2 + · · ·+ arcxc

⎞
⎟⎠

in order to be able to say that⎛
⎜⎝

a11x1 + a12x2 + · · ·+ a1cxc

a21x1 + a22x2 + · · ·+ a2cxc

· · · · · · · · · · · · · · · · · · · · · · · ·
ar1x1 + ar2x2 + · · ·+ arcxc

⎞
⎟⎠ =

⎛
⎜⎝

b1

b2

· · ·
br

⎞
⎟⎠

represents the same thing as⎧⎪⎨
⎪⎩

a11x1 + a12x2 + · · ·+ a1cxc = b1

a21x1 + a22x2 + · · ·+ a2cxc = b2

· · · · · · · · · · · · · · · · · · · · · · · · · · · = · · ·
ar1x1 + ar2x2 + · · ·+ arcxc = br

But now this is simple! It will be enough to invent a product of matrices for
which⎛

⎜⎜⎝
a11 a12 . . . a1c

a21 a22 . . . a2c
...

...
...

...
ar1 ar2 . . . arc

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x1

x2
...

xc

⎞
⎟⎟⎠ =

⎛
⎜⎝

a11x1 + a12x2 + · · ·+ a1cxc

a21x1 + a22x2 + · · ·+ a2cxc

· · · · · · · · · · · · · · · · · · · · · · · ·
ar1x1 + ar2x2 + · · ·+ arcxc

⎞
⎟⎠

Said in this way it seems a purely artificial thing, but instead we are dealing
with a point of fundamental importance. In the next chapter, in particular in
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Section 2.2 we will study, and put in the proper context, the concept of a row
by column product of two matrices. But even now we can use the formalism
Ax = b to describe a generic system of linear equations. The student should
begin to get the idea that this is not just a mere formalism but that Ax really
represents a product, i.e. a row by column product of A and x, as we will see
in detail in just a little bit.
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Exercises

Exercise 1. What do the following two matrices have in common?

A =

(
1
2

)
B = (1 2 )

Exercise 2. Consider the system of linear equations{
x1 +2x2 − 1

2
x3 = 0

−x2 +0.02x3 = 0.2

Describe r, c, a21, b2.

Exercise 3. How does one write a generic matrix with two rows and
three columns?

Exercise 4. Is it true that for the coefficient matrix B, which we discussed
in Section 1.3, the following formula is valid: B ∈Matr,c+1(Q)?

Exercise 5. Consider the Example 1.1.4 and generalize it by substituting
four letters for the numbers 120, 204 and 78, 246. Given that we used F1, F2,
D1, D2 respectively to represent the factories and the dealers, decide which
of the representations proposed below seem most relevant⎧⎪⎪⎨
⎪⎪⎩

x1 + x2 = f1

y1 + y2 = f2

x1 + y1 = r1

x2 + y2 = r2

⎧⎪⎪⎨
⎪⎪⎩

x1 + x2 = b1
y1 + y2 = b2
x1 + y1 = b3
x2 + y2 = b4

⎧⎪⎪⎨
⎪⎪⎩

x1 + x2 = a
y1 + y2 = b
x1 + y1 = c
x2 + y2 = d

Exercise 6. Verify that⎛
⎜⎜⎝

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 1 0 0 120
0 0 1 1 204
1 0 1 0 78
0 1 0 1 246

⎞
⎟⎟⎠

are, respectively, the coefficient matrix and augmented matrix of the system
of linear equations associated to Example 1.1.4.
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Operations with Matrices

it is of basic importance to attentively read the text
to check if any has been forgotten

Matrix, matrices. . . how many times have we used these words. It probably
won’t surprise you that we will continue to use those words frequently. The
matrix is one of the most useful mathematical objects we have at our disposal,
a basic tool for those who use mathematics. This is the case for lots of good
reasons, some of which we have already seen and some we will see shortly.

In this chapter we will look in more depth at matrices and study some
manipulations it is useful to carry out with them. We will discover the impor-
tance of the matrix product called the row by column product. Having done
that we will meet some strange objects called graphs and weighted graphs.
We’ll make a short genovese1 detour which will tell us how much it costs to
multiply two matrices.

We will also see symmetric and diagonal matrices. These play a very im-
portant role in what follows and we will discover (perhaps with sadness,
perhaps with indifference) that matrix multiplication is not commutative.
Then, almost by accident, we will meet some strange numerical entities, in
one of which we will see that the equality 1+1 = 0 holds. At that point some
readers may think that, in spite of our promises, even this book is destined
to lose contact with reality. Some others might ask, what use is it to have a
situation in which the equality 1 + 1 = 0 holds?

What can I say? I can reassure the reader that, if he will have the patience
to wait until the end of the chapter. . . she will be illuminated!! Not in the Zen
sense, even if it is always best to not put limits on the power of illumination,
but in the sense of resolving a practical problem related to electrical circuits.
In the meantime, before we arrive at this problem we will visit some wine
producers, some mountain villages, some information networks and other

1The Genovese, like the Scots, are known to seek a good price when in the
marketplace.

Robbiano L.: Linear Algebra for everyone
c© Springer-Verlag Italia 2011
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pleasant places, and then we will arrive at the illumination with the help of
the inverse of a matrix. Matrices, are we back to them again? you say. But I
have never forgotten them.

2.1 Sum and the product by a number

Let’s begin with a very simple example.

Example 2.1.1. Wine producer
Let’s suppose that we are trying to record, in a matrix, information about the
sales of five different wines, in a given half year period, to certain wine sellers
in three different cities. If we use the convention that the rows correspond
to the cities and the columns to the type of wine then the matrix will be of
type (3, 5). We have a matrix for each half year period, hence in a given year
we will have two matrices which we will call A1 and A2. What is the matrix
which contains all the sales data for the whole year? Suppose that

A1 =

⎛
⎝ 120 50 28 12 0

160 55 33 12 4
12 40 10 10 2

⎞
⎠ A2 =

⎛
⎝ 125 58 28 10 1

160 50 30 13 6
12 42 9 12 1

⎞
⎠

It’s clear that the matrix which contains the data for the whole year is ob-
tained by summing the corresponding entries of the two matrices, in other
words ⎛

⎝ 245 108 56 22 1
320 105 63 25 10
24 82 19 22 3

⎞
⎠

Situations like this are rather common and they encourage us to define the
sum of two matrices of the same type as that matrix of the same type which
has as its entries the sum of the corresponding entries of the two matrices.

If we want to express such a rule in a formal way we can say: given two
matrices A = (aij) and B = (bij) of the same type, then

A + B = (aij + bij)

This definition shows that A + B = B + A, or put another way, that the
following property holds:

The sum of matrices is commutative

If bij = 0 for every i, j then the matrix B is called the zero matrix and
it has the property that A + B = A. Thus, the zero matrix of a given type
behaves, with respect to the sum of matrices, in the same way that 0 behaves
with respect to the sum of numbers. The analogy is so strong that we often
call the zero matrix 0. You will have to understand from the context the
type of the zero matrix we are considering. For example, if A is a matrix of
type (2, 3), then in the formula A + 0 = A we realize that the 0 represents a
matrix also of size (2, 3), i.e. in this context 0 =

(
0 0 0
0 0 0

)
.
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Example 2.1.2. Consumer prices
Suppose we have a matrix which represents the prices of some common items
in different cities. Suppose that C1, C2, C3 are three cities and B1, B2, B3, B4

are the average costs of four common items in a fixed month. For example,
the matrix

A =

⎛
⎝ 50 12.4 8 6.1

52 13 8.5 6.3
49.3 12.5 7.9 6

⎞
⎠

could represent the data for the month of August in 2006. If one expects an
increase in price due to inflation at the rate of 4% over the next 12 months,
the matrix B which we expect would give the information for the month of
August 2007 is

⎛
⎝1.04× 50 1.04× 12.4 1.04× 8 1.04× 6.1

1.04× 52 1.04× 13 1.04× 8.5 1.04× 6.3
1.04× 49.3 1.04× 12.5 1.04× 7.9 1.04× 6

⎞
⎠=

⎛
⎝ 52 12.9 8.32 6.34

54.08 13.52 8.84 6.55
51.27 13 8.22 6.24

⎞
⎠

Matrices of this type, but decidedly much larger and filled with more data,
are fundamental in studying the changes in prices of commonly used items.
They are thus often used by government offices which gather and monitor
such statistics. We have thus arrived, in a very natural way, at the definition
of the product of a number and a matrix of a given type as that matrix, of
the same type, which has as its entries the product of the number with the
corresponding entry in the original matrix.

If we want to express the rule in a formal way, we say that, given a matrix
A = (aij) and a number α, then

αA = (αaij)

We have thus described the product of a matrix by a number (or by a
scalar).

2.2 Row by column product

In the last chapter we saw an important use of row by column products of
matrices. Now we would like to deepen that discussion with the help of some
interesting examples.

Example 2.2.1. Mountain villages
Let’s consider the following situation. Suppose we were in a mountain village
and we wanted to get to another by means of certain mountain paths. Let’s
call, for brevity, the village we are starting from S, and the village where we
would like to arrive A.

Looking at the map we notice that we will have to pass through one of
four other villages, which we will call B1, B2, B3, B4. We also notice that
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from S to B1 there are 3 possible routes, from S to B2 there are 2 possible
routes, from S to B3 there are 4 possible routes, and from S to B4 there is
only one route. Moreover we notice that from B1 to A there are 2 possible
routes, from B2 to A there are 5 possible routes, from B3 to A there is only
one possible route, and from B4 to A there are 4 possible routes.

It is natural to ask the following question: how many different routes are
there from S to A? The reasoning is not very difficult. It requires little reflec-
tion to realize that the total number of routes is the sum of the number of
routes that pass through B1 with the number of routes which pass through B2

with the number of routes that pass through B3 with the number of routes
that pass through B4.

And how many of these routes, for example, pass through B1? We can go
from S to B1 with three possible routes and from B1 to A with 2 possible
routes and so it is clear that to go from S to A passing through B1 we have
3 × 2 = 6 possible routes. We can repeat the same reasoning to count the
possible routes through B2, B3 and B4 and one concludes that the total
number of possible routes is

3× 2 + 2× 5 + 4× 1 + 1× 4 = 24

Let’s now try to find a mathematical model to describe what we have just
described in words. First we can use a row matrix (or a vector) to encapsulate
the information about the number of possible routes from S to B1, B2, B3,
and B4 respectively. In this way we get a row matrix

M = ( 3 2 4 1 )

Notice that the representation as a row matrix means that the unique row
represents the village S while the four columns of the matrix represent the
four villages B1, B2, B3, B4. In other words, with this type of representation
we have implicitly decided that the rows (in this case there is only one)
represent the villages where we start and the columns the villages where we
can arrive. To maintain some coherence then, the paths from the villages B
to the village A will thus be represented by a matrix of type (4, 1), that is by
a column matrix, more precisely by the following matrix

N =

⎛
⎜⎝

2
5
1
4

⎞
⎟⎠

For example, in matrix M the entry in position (1, 3) represents the number
of possible paths between S and B3, in matrix N the entry in position (2, 1)
represents the number of possible routes between B2 and A.
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You are probably beginning to understand that in this case the mathematical
model is the following. We define

M ·N = ( 3 2 4 1 )

⎛
⎜⎝

2
5
1
4

⎞
⎟⎠ = 3× 2 + 2× 5 + 4× 1 + 1× 4 = 24

and then the total number of possible paths which connect S with A is the
single entry in the matrix M ·N . In other words, forming the product M ·N
as suggested, we obtain a matrix of type (1, 1), that is with one single entry,
and that entry is precisely the number 24.

The example we just described admits many generalizations. In particular,
the most obvious is that which one gets, for example, by considering 3 possible
starting villages S1, S2, S3 and two possible goals, villages A1 and A2. The
number of possible paths between the villages S3 and A2, for example, one
obtains by adding to the number of possible paths through B1 the number of
possible paths through B2 plus. . . In other words, we repeat the reasoning
before for each of the possible villages from which we can start with each of
the possible villages where we can arrive.

Following the conventions we used before it’s clear that the number of
possible paths between the starting villages S1, S2, S3 and the villages B1,
B2, B3, B4 can be described by a matrix M of type (3, 4) and that the number
of possible paths between the villages B1, B2, B3, B4 and the villages A1,
A2 are described by a matrix N of type (4, 2).

If we do the calculations as we did in the preceding example, for each pair,
(S1, A1), (S1, A2), (S2, A1), (S2, A2), (S3, A1), (S3, A2) we have a number.
But then it seems natural to write those six numbers in a matrix of type
(3, 2), that, given the way it was constructed, it would be correct to call a
row by column product between M and N . We will write such a matrix using
the symbol M ·N or simply MN .

The matrix MN , the row by column product of M and N , is thus of type
(3, 2) and the entry in position i, j represents the total number of the possible
paths from the village Si to the village Aj . Thus, if one has

M =

⎛
⎝ 1 2 1 5

3 2 4 1
3 1 4 1

⎞
⎠ N =

⎛
⎜⎝

7 1
1 5
1 2
2 3

⎞
⎟⎠

we obtain

MN =

⎛
⎝ 20 18

29 14
27 14

⎞
⎠
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For example, the total number of possible paths between S2 and A1 is

3× 7 + 2× 1 + 4× 1 + 1× 2 = 29

The more adventurous reader might be asking how much more one can ab-
stract and generalize the preceding reasoning. This is typical mathematical
curiosity. But note, I don’t mean this is an unusual happening. Many devel-
opments in mathematics begin with questions of this type, questions which
appear to be without practical content. But that is only their appearance. . .

Let’s think about this some more. Notice that this type of product was
useful in the preceding chapter (see Section 1.4) in order to describe a system
of linear equations using the formalism Ax = b, where Ax is precisely the
row by column product of the coefficient matrix A and the column matrix x.

Let’s also observe that an essential condition which allows us to carry out
the row by column product of two matrices A and B is that the number of
the columns of A is equal to the number of rows of B. That is so because
of the following: the number of columns of a matrix is the number of entries
in each of its rows while the number of rows of a matrix is the number of
the entries of each of its columns. The mathematical formalism of what was
suggested by the preceding considerations is the following

Suppose A = (aij) ∈ Matr,c(Q), B = (bij) ∈ Matc,d(Q). We construct
the matrix A ·B = (pij) ∈ Matr,d(Q), by defining

pij = ai1b1j + ai2b2j + · · ·+ aicbcj

The matrix constructed in this way has r rows (like A) and d columns
(like B) and is called the row by column product of A and B. Often,
for convenience, we write AB instead of A · B.

The fact that the entries of the two matrices are rational isn’t relevant. What’s
important is that the entries are in the same numerical entity and, moreover,
in that entity we can form both sums and products. For example, the same
procedure would work perfectly if, instead of rational entries, we had real
entries. Let’s see some other examples.

Example 2.2.2. Let’s try to find the matrix product of the following two
matrices

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

3 2 0
1 2 1
0 0 −1
3 2 7
1 1 1
2 2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

B =

⎛
⎝ 0 −1

1 1
1 1

⎞
⎠
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Notice that the number of columns of A coincides with the number of rows
of B and is 3. So, we can go on and we get

A · B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 · 0 + 2 · 1 + 0 · 1 3 · (−1) + 2 · 1 + 0 · 1
1 · 0 + 2 · 1 + 1 · 1 1 · (−1) + 2 · 1 + 1 · 1

0 · 0 + 0 · 1 + (−1) · 1 0 · (−1) + 0 · 1 + (−1) · 1
3 · 0 + 2 · 1 + 7 · 0 3 · (−1) + 2 · 1 + 7 · 1
1 · 0 + 1 · 1 + 1 · 0 1 · (−1) + 1 · 1 + 1 · 1
2 · 0 + 2 · 1 + 0 · 0 2 · (−1) + 2 · 1 + 0 · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
3 2

−1 −1
2 6
1 1
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Notice that we have, as was expected from the general discussion, the number
of rows in the matrix product equal to 6 (as was true for A) and the number
of its columns is 2 (as was true for B).

Example 2.2.3. The weighted graph
Let’s consider the following figure
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If, for the moment, we ignore the numbers in the figure, the part that
remains is the placing of the 4 points P1, P2, P3, P4, and the fact that there
are line segments which join some of them. For example P1 is connected to
P2 and to P4, while P3 is connected to only P2.

One understands immediately that a figure of this type could be a model
for the description of many different things. It could, for example, represent
the road connections between four towns P1, P2, P3, P4, and thus we see the
possibility to generalize Example 2.2.1. It could also represent the number of
electrical connections between four sub-stations P1, P2, P3, P4, and so on.
Because of the importance and the generality of the concept, figures like these
(without the numbers) are called graphs and have been studied intensively
by mathematicians.

The numbers in the figure can represent, for example, the number of direct
connections (in this case the graphs are called weighted). Thus, between P4

and P3 there are no direct connections while between P1 and P2 there are
three.
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Let’s consider the problem of trying to collect all the numerical information
which appears in the figure. One reasonable way to do this is certainly the
following:

P1 P2 P3 P4

P1 0 3 0 1
P2 3 0 2 4
P3 0 2 0 0
P4 1 4 0 0

Even better, we can get rid of the letters and only write the matrix

A =

⎛
⎜⎝

0 3 0 1
3 0 2 4
0 2 0 0
1 4 0 0

⎞
⎟⎠

It’s useful to make some observations about the matrix A. First of all we have
decided to declare 0 as the number of direct connections between any point
and itself. We are describing, with this, a choice rather than a rule, a choice
that, among other things, has its practical advantages, as we will shortly see.
The creation of mathematical objects to describe phenomena is subject, like
all human creations, to taste, mood and convention. For example, it’s clear
that one could use the number 1 instead of the 0 on the diagonal (see the
Example 2.5.1) and that would have given us another interpretation, namely
that every point has one direct connection with itself.

We find ourselves in a situation similar to that of the mathematician who
decides that 20 = 1. A priori, 20 should mean 2× 2 · · · × 2 as many times as
is indicated by the exponent, i.e. 0. But, that wouldn’t mean anything and
thus there is a certain liberty in how to define this. On the other hand, that
liberty is quickly limited by the desire to extend, to this particular case, a
well known property of exponents. One would like to have, for example, that
23

23 = 23−3 = 20 and inasmuch as the left hand side is equal to 1, we get the
convention that says that 20 = 1.

Let’s return to our matrix. We notice right away that we have a square
matrix and, as noted, all the elements on the principal diagonal are zero.
Notice that a14 = a41 = 1, and that a23 = a32. In general we have the
equality aij = aji for any i, j. We could say that the matrix is “reflected”
with respect to its principal diagonal. Such matrices are called symmetric.
The formal definition is the following.

Let A = (aij) be a matrix.
(a) The transpose of A, denoted by Atr, is the matrix that, for all i, j we

have aji as the entry in position (i, j).
(b) The matrix A = (aij) is called symmetric if aij = aji for all i, j. In other

words, A is symmetric if A = Atr.
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Notice that the definition of symmetric matrices forces them to be square.
Special examples of symmetric matrices are: the square matrices in which all
the entries are zero; the identity matrix Ir (which we will see in a moment).
Another important class of examples of symmetric matrices are the following.

Let A = (aij) be a square matrix. If aij = 0 whenever i �= j, then we say
that A is a diagonal matrix.

Let’s return to our graph. Why is the matrix A that we have associated to
the graph symmetric? The reason is that we have not oriented the connec-
tions, there is no unique direction which we have given, for example, to the 4
direct connections between P2 and P3. Thus it makes the same sense to say
that there are also 4 direct connections between P3 and P2.

Since A is a square matrix of size 4×4, we can perform the row by column
product of A with A and obtain a matrix which we (correctly) call A2 and
which is again a matrix of size 4× 4.

A2 = A · A =

⎛
⎜⎜⎝

10 4 6 12
4 29 0 3
6 0 4 8

12 3 8 17

⎞
⎟⎟⎠

And now comes the interesting question! What can we deduce from the entries
of A2? The first thing that shouldn’t surprise us is that A2 is symmetric, given
that we had a row by column product and A was symmetric. Moreover, let’s
try (for example) to interpret the entry, 12, in the (1, 4) position. Notice that
we get it as

12 = 0× 1 + 3× 4 + 0× 0 + 1× 0

The interpretation is similar to that given to the routes that connected the
mountain villages and generalizes that example. Let’s see how. There are 0
direct connections between P1 and P1 (recall our convention) and 1 direct
connection between P1 and P4. There are 3 direct connections between P1 and
P2 and 4 direct connections between P2 and P4. There are 0 direct connections
between P1 and P3 and 0 direct connections between P3 and P4. Finally, there
is 1 direct connection between P1 and P4 and 0 direct connections between
P4 and P4. Thus, there are exactly 0× 1 connections of length 2 between P1

and P4 that pass through P1, there are 3×4 that pass through P2 and so on.
In conclusion, the matrix A2, that is the matrix obtained by performing the
row by column product of A with itself, represents the number of connections
of length 2 between any two points of the graph.
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Example 2.2.4. The graph
Let’s now consider the following graph
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Notice that we have not written any numbers near the edges. We do this
to express the fact there is either a direct connection, for example between
P5 and P1, or that there is no connection, as for example between P1 and P3.
This graph can represent the connections between a collection of machines.
For example, it might be that P1 represents a computer and that P2, P4 and
P5 three peripheral devices (say P2 represents a keyboard, P4 a printer and
P5 a monitor) while P3 represents a peripheral device of the keyboard, for
example a mouse, and that there is a direct connection between the keyboard
(P2) and the printer (P4).

Using the same reasoning as in example 2.2.3 we can write the connection
matrix A

A =

⎛
⎜⎜⎜⎝

0 1 0 1 1
1 0 1 1 0
0 1 0 0 0
1 1 0 0 0
1 0 0 0 0

⎞
⎟⎟⎟⎠

Here also we can take the square of A and obtain

A2 =

⎛
⎜⎜⎜⎝

3 1 1 1 0
1 3 0 1 1
1 0 1 1 0
1 1 1 2 1
0 1 0 1 1

⎞
⎟⎟⎟⎠

It should not be too difficult for the reader to interpret the significance of A2.
For example, the fact that a45 is 1 signifies that there is exactly one connection
of length 2 between the printer P4 and the monitor P5. In fact, examining the
graph we can immediately exhibit the unique connection of length 2 which
passes through the computer P1.



2.3 How much does it cost to multiply two matrices? 35

2.3 How much does it cost to multiply two matrices?

Now that we have seen important uses of the matrix product, let’s make a
digression in order to discuss a fundamentally important question in effective
calculation. We want to evaluate the price we have to pay, i.e. the compu-
tational cost, to produce the row by column product of two matrices. What
does this mean?

Clearly it doesn’t make sense to ask ourselves how much time it takes for a
calculator to make a specific computation since the answer depends too much
on the nature of the calculator. It would be like asking how long it would take
for a car to make the trip between Montreal and Kingston on Highway 401.

However, is there something in the calculation of the product that doesn’t
depend on the calculator we use? In keeping with the metaphor we just
introduced, it’s clear that there is a piece of intrinsic data in the problem
of driving along Highway 401 between Montreal and Kingston, and that is
the number of kilometers. Thus, in calculating the product of matrices it
will be useful to count the number of elementary operations that have to be
performed.

Notice that keeping track only of the number of operations doesn’t take
into account the unit cost of each single operation. However, I don’t want to
enter into this extremely delicate discussion, even though it is at the very
center of the area called complexity theory, a subject of great importance
in modern Information Theory.

With this proviso, let’s concentrate on counting the number of operations
necessary to calculate a product. So, suppose we are given two matrices A
and B and that A is of type (r, c) and B is of type (c, d). Their product is
the matrix A · B, of type (r, d), as seen in Section 2.2. Given that we have
to perform rd row by column products in order to fill in all of the entries of
A · B, it will be enough to multiply rd by the number of operations it will
cost us to make a single row by column product. The entry in position (i, j)
of A · B is

ai1b1j + ai2b2j + · · ·+ aicbcj

The operations we have to perform are thus c multiplications and c−1 sums.
This number of operations has to be made for each entry of A · B and thus
has to be made, as we said, rd times. In conclusion, the number of elementary
operations to perform is

rdc products and rd(c− 1) sums

In particular, if the matrices A and B are square of type n, the number of
operations to perform is

n3 products and n2(n− 1) sums

It’s interesting to take a moment to think about what it means to say we
have to perform n3 products. Let’s remember that �3 is the volume of a cube
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with side �. Remember that this expression of the third degree in � (or as we
usually say, cubic in �) has the following effect: if we double the side of the
cube we increase the volume by a factor of eight. Analogously, for a square
matrix A of type 5 the number of multiplications needed to calculate A2 is
53 = 125, while for a matrix of type 10, i.e. of twice the size, the number of
multiplications to calculate its square is 103 = 1000, i.e. eight times 125.

2.4 Some properties of the product of matrices

Since we are now familiar with the product of matrices, it’s a good time
to discover the fact that many of the properties that everyone knows about
multiplication of numbers don’t hold for the multiplication of matrices! In
this section we will only give some numerical examples. The idea (hope) is
that these examples will be enough to convince the reader that we are moving
around in unfamiliar territory.

Let’s start by considering two matrices A and B, A of type (r, c) and B of
type (r′, c′). We have already seen that in order to make the product A · B
it’s necessary that we have c = r′. But, this doesn’t mean that we can also
perform the product B · A. In fact, to make that product we need another
condition, more precisely we need that c′ = r. In other words, in order to be
able to perform the two multiplications A · B and B · A we need that A be
of type (r, c) and that B be of type (c, r).

OK, let’s suppose that A is of type (r, c) and that B is of type (c, r) and
let’s also suppose that r �= c. In this case the product A · B is a matrix of
type (r, r), i.e. a square matrix of type r, while B ·A is a matrix of type (c, c),
i.e. a square matrix of type c. Since r �= c there is no way that A ·B = B ·A.
Let’s look at an example. Let

A =
(

2 2 1
1 0 0

)
B =

⎛
⎝ 1 −1
−2 0

3 3

⎞
⎠

Thus one has

A · B =
(

1 1
1 −1

)
B · A =

⎛
⎝ 1 2 1
−4 −4 −2

9 6 3

⎞
⎠

Are there cases in which both the products can be made and they both give
matrices of the same type? From the discussion above it’s clear that this
possibility exists only when the two matrices are square and of the same
type. But, even in this case we’re in for a surprise. Consider the following
example. Let

A =
(

2 2
1 0

)
B =

(
1 −1
−2 0

)
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Then one has

A · B =
(
−2 −2

1 −1

)
B ·A =

(
1 2
−4 −4

)

Clearly we see that A·B �= B ·A. We can finish with the following affirmation.

The row by column product of matrices is not commutative.
It’s a good idea to explore the row by column product a bit more, since the
entire discussion up to this point has shown that we are dealing with an
operation of fundamental importance.

Everyone knows that if a and b are two numbers different from 0 then their
product ab is different from 0. This property is not maintained for matrices.
In fact, it can happen that a power of a non-zero matrix is the matrix of all
zeroes. A matrix with this last property is called nilpotent. For example,
the matrix A =

(
0 1
0 0

)
is not the zero matrix, but A2 = A · A =

(
0 0
0 0

)
is.

Let’s go forward with our investigations even if, at this moment, it’s not
clear why we are gathering this information. I can, however, assure you that
the knowledge we are accumulating now will be very useful. . . and soon.

Everyone knows that the number 1 has the property that it is neutral
with respect to the product of numbers. By this I mean that 1 · a = a = a · 1
no matter what the number a is. Given this, the following question arises
spontaneously to a mathematician: is there a matrix which behaves with
respect to matrix products like the number 1 behaves with respect to number
products? This could seem a useless question, but we will see right away that
it is not. Let’s consider the matrices

M =

⎛
⎝ 1 2 1 5

3 2 4 1
3 0 4 1

⎞
⎠ and N =

⎛
⎜⎝

7 1
1 0
1 2
2 3

⎞
⎟⎠

which we have already seen in the problem of the Mountain Villages. More-
over, let’s consider the matrices

I2 =
(

1 0
0 1

)
I3 =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ I4 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠

Doing the calculations one easily sees that

I3 ·M = M = M · I4

and that
I4 ·N = N = N · I2

It thus seems that there are many matrices which act like the number 1 and
we also see that we have to make a clear distinction between multiplication
on the left and multiplication on the right.
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Clearly we are dealing with very special matrices. If A is a matrix of type
(r, s) and Ir and Is are the matrices of type (r, r) and (s, s) having all entries
on the diagonal equal to 1 and all other entries equal to zero, then we can
form the product Ir ·A and the result is A and if we form the product A · Is,
the result is also A. This property of the matrices Ir and Is, is similar to that
of the number 1 which leaves a product unchanged, encourages us to give
these matrices a name. We will call them identity matrices, respectively,
of type r and s. If there is no danger of ambiguity we will indicate them
simply using the letter I.

We end this section with some good news! We know that in the integers
the following formulas hold

a + (b + c) = (a + b) + c (ab)c = a(bc) a(b + c) = ab + bc

Said in another way, addition of integers is associative, multiplication
of integers is associative, and multiplication of integers distributes
over addition of integers.

It turns out that these formulas are also valid for matrices when we con-
sider the sum and the row by column product of matrices as the operations
indicated in the formulas (always supposing that the operations can be car-
ried out with matrices). For example, the reader can verify that if

A =
(

1 2 3
0 −1 3

)
B =

(
0 1 1
1 −1 3

)
C =

(
1 2 3
0 −1 3

)

then one has

A + (B + C) =
(

1 2 3
0 −1 3

)
+

(
1 3 4
1 −2 6

)
=

(
2 5 7
1 −3 9

)

(A + B) + C =
(

1 3 4
1 −2 6

)
+

(
1 2 3
0 −1 3

)
=

(
2 5 7
1 −3 9

)

The reader can verify, for example, that if

A =
(

1 2 3
0 −1 3

)
B =

⎛
⎝ 2

3
−10

⎞
⎠ C =

⎛
⎝ 7

0
−11

⎞
⎠

then one has

A(B + C) =
(

1 2 3
0 −1 3

) ⎛
⎝ 9

3
−21

⎞
⎠ =

(
−48
−66

)

AB + AC =
(
−22
−33

)
+

(
−26
−33

)
=

(
−48
−66

)
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The reader can verify, for example, that if

A =
(

1 2 3
0 −1 3

)
B =

⎛
⎝ 2

3
−10

⎞
⎠ C = (−1 −2 )

then one has

A(BC) =
(

1 2 3
0 −1 3

) ⎛
⎝−2 −4
−3 −6
10 20

⎞
⎠ =

(
22 44
33 66

)

and also

(AB)C =
(
−22
−33

)
(−1 −2 ) =

(
22 44
33 66

)

Actually, I’m not sure if the reader is ready to consider these facts as good
news. What’s the positive aspect of these properties? Without getting into
the nitty gritty of these delicate mathematical questions it will be enough
to reflect on the fact that having these properties permits us to work with
great liberty when making calculations. Perhaps the reader is still not con-
vinced that these properties represent good news? If the gentle reader has the
patience to continue I believe that what follows will be convincing.

2.5 Inverse of a matrix

Mathematicians love to use (what they call) number fields such as Q (the
field of rational numbers), R (the field of real numbers), C (the field of com-
plex numbers). Why? Largely because of an important property that they
have in common, namely that every non-zero element has an inverse
under multiplication. That is a property that the set of integers Z doesn’t
have (algebraists would like to correct me and speak of the ring of integers)
because, for example, the number 2 doesn’t have an integer as inverse.

Inasmuch as we previously introduced an operation of product of two ma-
trices and we have also seen that there exist identity matrices, it is natural to
ask ourselves if there exist matrix inverses. Probably there are some readers
who would advance a doubt that such a question is, in fact, natural. Other
readers will say that these are the curious kind of questions that are typical
of mathematicians who seem to enjoy studying abstract structures.

That’s not quite right. Inverse matrices play a role of fundamental impor-
tance even in applications and in an attempt to convince the reader of the
validity of this assertion we will see an interesting example which will permit
us to make a side trip into the fascinating land of algebra (beware, when a
mathematician uses the word fascinating there could be some danger on the
horizon. . .).
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By making a simple calculation, it’s easy to see that if A is a matrix and
there is another matrix B for which AB = Ir = BA, then A has to be
a square matrix of type r. A matrix like B will be denoted, conveniently,
by A−1, and it is not difficult to prove that A−1 (if it exists) is unique.
Moreover, mathematicians know how to prove that if A is a square matrix
and B is a left inverse, i.e. BA = I, then it is also a right inverse, i.e. AB = I.
Analogously, if B is a right inverse, then it is also a left inverse. The simplest
example of a matrix which has an inverse is Ir. In fact, IrIr = Ir and hence
I−1
r = Ir , in other words, Ir is its own inverse.

Let’s take a break from this formal mathematical language and reflect a
bit on what we have just seen (the reason we’ve used italics to write the word
“reflect” I’ll leave to the specialists). There are actions which, done once have
a certain effect but done twice erase the effect. Some examples are: taking a
playing card and turning it over; flipping a switch to turn on a light or even
taking the negative of a number. In fact, if you turn over the card twice it
ends up in the same position as at the start and if you flip the light switch
twice and you started with the light on it will still be on or if you started
with the light off it will still be off. Finally, the negative of the negative of a
number is the number itself.

Is there a mathematical way to capture the essence of this reflection? Let’s
try. Suppose we had a mathematical world made of only two symbols, which
no one would prohibit us from calling 0 and 1; moreover we could establish
the convention that said that 0 corresponded to doing nothing and 1 to doing
something! The preceding discussion could then conveniently be interpreted
by saying that

1 + 1 = 0

It seems a bit strange, but instead the discussion becomes even more inter-
esting when one realizes that one can go on and discover that the following
equalities also make some sense

1 + 0 = 0 + 1 = 1 and 0 + 0 = 0

interpreting 0 and 1 as above. In fact, the equality 1+0 = 1 can be interpreted
as doing something and then doing nothing is the same as doing something,
something which we could agree makes sense.

What we have just said can be synthesized in the following addition table
on the set of the two symbols 0 and 1

+ 0 1
0 0 1
1 1 0

Only the zero in the right bottom position seems strange, inasmuch as we
would expect to find the number 2 in that place. And what if we were to put
alongside this table of sums the usual multiplication table?
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× 0 1
0 0 0
1 0 1

What kind of significance is it possible to give to this product operation?
As for the set {0, 1} to which we have given these operations of sum and
product; in what way does it resemble, for example, the set Q, the field of
rational numbers?

As far as the first question is concerned, we will shortly give a concrete
reason for this strange structure. The second question sounds a bit odder!
But, one should observe that, just like for the rational numbers, every number
different from 0 has an inverse; in fact the unique element different from 0,
i.e. 1, is its own inverse and we see that from the fact that 1 × 1 = 1. Thus,
there is an analogy between these objects. Mathematicians give a name to
this structure which is made up of two numbers and two operations, they call
it Z2 (or F2) and they observe that one is dealing with a number field just
like Q. Both the names Z2 and F2 contain the symbol 2, which indicates that
in this set 1 + 1 = 0, which is a bit like saying that 2 = 0. As you can see,
we have returned to the point where we began, i.e. to the fact that there are
situations (even practical situations) in which doing something twice is like
not doing anything at all, i.e. in which 2 = 0!

Now we are going to make yet another leap ahead. Let’s consider a square
matrix A of type r whose entries are in Z2 and look for, if it exists, the
inverse A−1. But, what is the point of doing this? We’ll soon see an example
which will make sense of this strange idea.

Example 2.5.1. Let’s turn on the lights
Let’s suppose that we have an electric circuit represented by the following
graph

P1 P4

P5

P3P2

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

.................................................................................................................................................................................................................................................................

....................................................................................................................................................................................................................................................................................................................

...............
...............

...............
...............

................
...............

...............
...............

...............
...............

..................................................................................................................................................................................... ................................................................................................................................................................................................................................................................. •

•

• •

•

The vertices P1, P2, P3, P4, P5 of the graph represent devices consisting
of a lamp and a switch; the edges of the graph represent direct connections
obtained, for example, by electric wires. Each switch can either be ON or
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OFF and each lamp can be either ON or OFF. If we either turn on or turn
off a switch that action changes the situation of the lamp where that switch is
located as well as the lamps adjacent to that switch, i.e. those corresponding
to vertices directly connected to that switch.

Let’s see what happens with an example. Suppose that lamps P1 and P3

are on and that lamps P2, P4 and P5 are off and suppose we turn the switches
(once) at P3 and P4. What happens? What is the state of the 5 lamps? Let’s
look at the lamp at P1. Turning the switch at P3 doesn’t alter the situation
of that lamp since P1 and P3 are not adjacent, on the other hand turning
the switch at P4 does change the situation of the lamp at P1, since P4 and
P1 are adjacent. Thus, the state of the lamp at P1 is changed by turning the
two switches and since the lamp at P1 was on at the beginning, it will be off
after. We can do the same sort of analysis for each lamp and the final result
will be: the lamp at P1 is off, at P2 on, at P3 on, at P4 off and at P5 on.

If the idea is now sufficiently clear, the next step is to find a good mathe-
matical model for this kind of situation. We begin with the observation that
we can place all the information about the connections in the graph as entries
in a symmetric matrix of type 5, just as we did in Section 2.2. We obtain the
matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 1 1
1 1 1 0 0
0 1 1 1 0
1 0 1 1 1
1 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎠

Recall that, for example, the entry 1 in position (4, 3) means that there is
a direct connection between P4 and P3, while the entry 0 in position (3, 5)
means that there is no direct connection between P3 and P5. Also observe
that, unlike Example 2.2.3, the nature of this example suggests that we put
1’s all along the main diagonal.

Now consider a column matrix in which we insert information about which
switches we would like to turn. Given that we want to turn the switches only
at P3 and P4, it will be convenient to use the column matrix

V =

⎛
⎜⎜⎜⎜⎜⎝

0
0
1
1
0

⎞
⎟⎟⎟⎟⎟⎠

Having arrived at this point, one has a beautiful application of the matrix
product. We can interpret both A and V as matrices having entries in Z2 and
we can perform the product because A is of type 5 and V is of type (5, 1).
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One obtains

A · V =

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 1 1
1 1 1 0 0
0 1 1 1 0
1 0 1 1 1
1 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

0
0
1
1
0

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1
1
0
0
1

⎞
⎟⎟⎟⎟⎟⎠

Let’s see why we get the result indicated above and also try to understand the
significance of the product A · V . Let’s figure out the entry in position (3, 1)
of the product. We get that entry by taking the product of the third row of A
with the column V . One thus has 0×0 + 1×0 + 1×1 + 1×1 + 0×0 = 0
(recall the addition table, in Z2 one has 1 + 1 = 0).

Now comes the really interesting part. What does the sum of the products
0× 0 + 1× 0 + 1 × 1 + 1 × 1 + 0× 0 really mean? Let’s remember that the
third row concerned the place P3. The first summand 0×0 can be read in the
following way: the switch at P3 is not directly connected with the position
P1 (hence the reason for the zero in position (3, 1) of the matrix A) which
interacts with the fact that the status of the switch at P1 was not changed
(hence the reason for the 0 in the first place of the matrix V ). The result of
this interaction is clearly that the state of the lamp at P3 was not changed.

The second summand 1 × 0 can be read in the following way: the switch
at P3 is directly connected with the place P2 (hence the reason for the 1 in
position (3, 2) of the matrix A) and this interacts with the fact that the status
of the switch at P2 was not altered (hence the reason for the zero in position
(2, 1) of the matrix V ). The result of this interaction is that the state of the
lamp in P3 is not altered.

The third summand 1 × 1 can be interpreted in the following way: the
switch at P3 is directly connected with the place P3 (hence the reason for
the 1 in position (3, 3) of the matrix A) and that interacts with the fact that
the status of the switch at P3 is altered (hence the reason for the 1 in position
(3, 1) of the matrix V ). The result of this interaction is that the state of the
lamp at P3 is altered.

Now it should be clear how to go on and explain all the five summands.
We have to perform the sum of the five actions in order to see the total effect
on the lamp at P3. We have 0 +0 +1 +1 +0 and hence the state of the lamp
at P3 was altered twice. The result of the sum is 0, in other words, the state
of the lamp at P3 is unchanged.

One can interpret all the other products in an analogous way and conclude
that this product of matrices with entries in Z2 is a good mathematical model
for the problem of seeing how the electrical system is altered by changing the
status of one or more of the switches.
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It’s also very interesting to take a look at the multiplication table of Z2,
i.e. at the following table

× 0 1
0 0 0
1 0 1

especially now that it has taken on a very concrete meaning. In fact, 0×1 = 0
puts together two things from the mathematical model: first that there is no
direct connection between the first and the second position and combines that
with the fact that changing the status of the switch in the second position
doesn’t alter the state of the lamp in the first position, and so on.

One should observe the subtlety that in this model 1×0 has a significance
that is completely different from 0 × 1, this despite the fact that both of
these give the result 0, which saves the commutativity of the product. If you
enjoy this last observation that is a clear symptom that you are suffering
from mathematical madness.

Let’s go one step further. Suppose we want to figure out what we have to
do with the switches in order to get some desired result, given that we know
the current state of the lamps. The difference between the final state and the
initial state gives us a table of the changes we want to make in the states.
For example if, at the beginning, all the lamps were off and we wanted, in
the end, to have all the lamps on, that means we want to change the state of
all of the lamps. Thus, we want to make a series of turns of the switches in
order to obtain the column matrix

b =

⎛
⎜⎜⎜⎝

1
1
1
1
1

⎞
⎟⎟⎟⎠

What we don’t know, i.e. the unknowns, in this problem is what we have
to do to each of the switches. I.e. we have five unknowns x1, x2, x3, x4, x5.
When all is said and done we see that what we want are the solutions to the
system of linear equations

Ax = b i.e.

⎛
⎜⎜⎜⎝

1 1 0 1 1
1 1 1 0 0
0 1 1 1 0
1 0 1 1 1
1 0 0 1 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
1
1
1
1

⎞
⎟⎟⎟⎠

Once again we find ourselves facing a system of linear equations S having
five equations and five unknowns. Moreover, the notion of an inverse comes
into play in an essential manner. In fact, if there is a matrix inverse for A,
then we have that

x = A−1Ax = A−1b
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and thus we have found the solution! In our case we don’t know yet how to
calculate the inverse, but we can check that

A−1 =

⎛
⎜⎜⎜⎝

1 1 0 1 0
1 0 0 0 1
0 0 0 1 1
1 0 1 1 0
0 1 1 0 1

⎞
⎟⎟⎟⎠

thus

x = A−1b =

⎛
⎜⎜⎜⎝

1
0
0
1
1

⎞
⎟⎟⎟⎠

is the solution. In other words, if the lamps are all off then in order to turn
them all on we have to change the status of the switches in positions P1, P4

and P5, as you can actually verify easily with the help of the graph.

We’ll end this important section with a question. Why did we look for
the inverse of the matrix in this example and not try to solve the system of
linear equations directly? And, if there had not been an inverse for A, how
would we have found a solution? It’s probably a good idea to get used to the
fact that science, like life, has more questions than answers. But, in this case
we can consider ourselves fortunate, because in the next chapter we will get
answers to these two questions.
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Exercises

Exercise 1. Calculate, where possible, the product of the following pairs
of matrices

(a) A =

(
0 1
0 0

)
A′ =

(
0 2
0 0

)

(b) A =

(
0 1 0
0 0 1

)
A′ =

(
0 2 2
0 0 4

)

(c) A =

(
0 1 0
0 0 1

)
A′ =

⎛
⎝ 0 2

0.3 0
0.2 5

⎞
⎠

Exercise 2. Does it cost more to multiply two matrices A, B which are
square of type 6 or two matrices A, B of type (4, 5) and (5, 11) respectively?

Exercise 3. Is it true that one can multiply a matrix by itself only if it
is a square matrix?

Exercise 4. Let I be the identity matrix of type 2.

(a) Find all the solutions of the matrix equation X2 − I = 0, i.e. all the
square matrices A ∈Mat2(R) for which A2 − I = 0.

(b) Is it true that there are an infinite number of solutions?
(c) Is it true that in all the solutions we must have the equality |a11| =

|a22|?

Exercise 5. Let A ∈ Matn(R) and let I be the identity matrix of type
n.

(a) Show that if A3 = 0 then I + A and I − A + A2 are inverses of each
other.

(b) Is it true that if there is a natural number k such that Ak = 0 then
I + A is invertible?

(c) Is it always true that a matrix of type I + A is invertible?

Exercise 6. Calculate A3 in each of the following cases

A =

(
0 1
0 0

)
A =

(
1 0
0 1

)

Exercise 7. Let A =
(
1 −1
1 0

)
. Verify that A6 = I .
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Exercise 8. Consider the matrices

A =

⎛
⎝ 1 1 1

0 −1 3
2 −1 1

⎞
⎠ B =

⎛
⎝ 1 a b

a −1 b
b −b a

⎞
⎠

Find, if they exist, real numbers a, b such that the two matrices A, B
commute (i.e. such that A · B = B ·A).

Exercise 9. Let A be a matrix of type (r, c) and B a matrix of
type (c, s).

(a) Is it true that if A has a row of zeroes then AB also has a row of
zeroes?

(b) Is it true that if A has a column of zeroes then AB also has a column
of zeroes?

Exercise 10. Construct a simple example, similar to that of Exam-
ple 2.5.1 in which, starting from a particular configuration of switches and
lamps (some lamps on and the rest off) in which it is not possible to arrive
at the state in which all the lamps are on.

Exercise 11. Let A be a matrix.

(a) Is it true that (Atr)tr = A, no matter what A is?
(b) Is it true that if Atr is symmetric then A is also symmetric?

Exercise 12. Let A be a matrix with real entries.

(a) Prove that the elements of the diagonal of AtrA are all non-negative.
(b) If (Atr)tr = I , can one describe A−1 without having to calculate it?

Exercise 13. Let’s consider matrices with rational entries and suppose
that there is the same cost for each operation between numbers (addition
or multiplication).

(a) Calculate the computational cost of forming the product of two square
diagonal matrices of type n.

(b) Calculate the computational cost of finding A2 when A is a symmetric
matrix of type n.

Exercise 14. Consider the diagonal matrices in Mat2(Q), i.e. the matri-
ces Aa,b =

(
a 0
0 b

)
con a, b ∈ Q.

(a) Prove that for every a ∈ Q the matrix Aa,a commutes with all the
matrices in Mat2(Q).

(b) Is the same statement true for the matrix A1,2?
(c) Prove that any diagonal matrix commutes with all the diagonal ma-

trices.
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The following exercises are a bit different from the ones above. In fact the
word Exercise is preceded by the symbol @. This means that in order to work
the exercise one needs a calculator (see the Introduction and the Appendix)
or, in any case, the use of a calculator is strongly advised. In the last chapter
we will see a more sophisticated method to solve Exercises 15 and 16 which
uses the idea of eigenvalue.

@ Exercise 15. Calculate A100 for the following matrices

(a) A =

(
1 1
0 2

)

(b) A =

(
3 0
2 −1

)

@ Exercise 16. Consider the following matrices

A =

⎛
⎝0 1 − 1

2

0 0 12
3 1

5 8

⎞
⎠ B =

⎛
⎝ 1

3
1 1

2 1 −21
0 3

4 1

⎞
⎠

and prove the following equalities

A13=

⎛
⎜⎜⎜⎝

281457596383971
6250

8243291212479289
1000000

257961125226942479
2000000

1883521814429871
3125

13791079790208861
125000

431570585554290003
250000

431570585554290003
1000000

394993103775412801
5000000

154508738617589077
125000

⎞
⎟⎟⎟⎠

B13=

⎛
⎜⎜⎝

2075574373808189
3265173504

−2771483961974593
272097792

−34285516978000235
2176782336

−22589583602079623
1088391168

−7482652061373805
725594112

155899288381048673
725594112

46412434031431
120932352

−2468698236647575
322486272

−872661281513917
80621568

⎞
⎟⎟⎠

calculators are not intelligent,
but they think they are
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Solutions of Systems of Linear Equations

in theory there is no difference
between theory and practice,

in practice there is

In this chapter we come to grips with the question of how to solve, in practice,
systems of linear equations. Our strategy will be to gather a certain number of
observations which will allow us to form a strategy. Given that many math-
ematicians often use the adjective clear for something which usually is far
from clear but is tiresome to prove we will prove our good intention to avoid
this bad habit by beginning with an observation that is totally clear.

Recall that we used the symbol I to indicate the identity matrix: our first
observation is that a system of linear equations of the form Ix = b clearly
has the solution x = b. In fact since we have the equality Ix = x then x = b
is clear. Thus, we have solved this system of linear equations.

But, it’s hard to imagine ever having the good fortune to find oneself with
such a simple system of linear equations. In general we don’t even expect the
matrix of coefficients to be a square matrix. So, how do we proceed? The basic
idea is to replace the original system of linear equations with another system
of linear equations which has the same solutions but whose coefficient matrix
is more similar to the identity matrix and thus is the coefficient matrix of a
system of linear equations which is easier to solve.

This idea brings us to the study of elementary matrices (which will rein-
force the importance of the row by column product) and allows us to describe
an algorithm called the Gauss Method based on the choice of special elements
called pivots. We’ll be able to calculate the inverse of a matrix, when it exists.
We’ll also make a digression on the computational cost of the Gauss Method.
In addition we will learn when and how to decompose a square matrix as
a product LU , where L and U are two special triangular matrices. Finally
we will witness the arrival on stage of certain numbers called determinants.
These are certain non linear expressions which play an essential role in linear
algebra.

Robbiano L.: Linear Algebra for everyone
c© Springer-Verlag Italia 2011
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Wait a minute. Didn’t we say that this was to be a chapter of practical
methods? OK, let’s quit the chatting and get down to work.

3.1 Elementary Matrices

From now on we will use the convention of calling two systems of linear
equations equivalent if they have exactly the same solutions. The word
equivalent was not chosen at random. Mathematicians love this word, and
for good reasons. Without going into detail, just let me say that the notion
of an equivalence relation is at the base of a large part of the formal
structure of mathematics. Inasmuch as we are interested in solving a system
of linear equations, having this notion of equivalence gives us the freedom to
substitute one system for another one that is equivalent to it.

The reader is likely to ask: what do I gain from doing this? I will begin
my discussion by responding to this question.

To get started let me say that we plan to do a certain number of elementary
operations which will transform our original system of linear equations into
an equivalent system which is much easier to solve. Let’s begin with some
simple observations.
(a) If we interchange two equations of a system of linear equations we get an

equivalent system of linear equations.
(b) If we multiply an equation in a given system of linear equations by a

number different from zero, we get an equivalent system of linear equa-
tions.

(c) If we replace an equation in a linear system by an equation which is the
sum of the original equation and a multiple of another equation of the
system, we get an equivalent system of linear equations.

The three operations mentioned above are called elementary operations
on the given system of linear equations.

Let’s look, in detail, at a couple of examples.

Example 3.1.1. A system having two equations and two unknowns
Consider the following system of linear equations

{
2x1 − 3x2 = 2
x1 + x2 = 4 (1)

The solutions to this system of linear equations are the same as the solutions
to the system of linear equations

{
x1 + x2 = 4

2x1 − 3x2 = 2 (2)
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which is obtained by interchanging the two equations in (1), and are also the
same as the solutions to{

x1 + x2 = 4
− 5x2 = −6 (3)

which is obtained by substituting, for the second equation in (2), the second
equation minus two times the first equation, and are also the same as the
solutions to {

x1 + x2 = 4
x2 = 6

5

(4)

which is obtained by multiplying the second equation in (3) by the number
−1

5 , and are also the same as the solutions to

⎧⎨
⎩

x1 = 14
5

x2 = 6
5

(5)

which is obtained by substituting for the first equation in (4), the first equa-
tion minus the second equation. In this case, given that the system (5) is of
the form Ix = b, it can be solved immediately and we have done what we
set out to do.

Example 3.1.2. A system having two equations and three unknowns
Consider the following system of linear equations{

2x1 − 3x2 + x3 = 2
x1 + x2 − 5x3 = 4 (1)

Its solutions are the same as that of the system of linear equations{
x1 + x2 − 5x3 = 4

2x1 − 3x2 + x3 = 2 (2)

which is obtained by interchanging the two equations of (1), and moreover
has the same solutions as the system of linear equations{

x1 + x2 − 5x3 = 4
− 5x2 + 11x3 = −6 (3)

which is obtained by replacing the second equation in (2) by the second
equation minus twice the first, and this system has the same solutions as{

x1 + x2 − 5x3 = 4
x2 − 11

5
x3 = 6

5

(4)
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which is obtained by multiplying the second equation in (3) by −1
5 , and

moreover has the same solutions as{
x1 − 14

5 x3 = 14
5

x2 − 11
5 x3 = 6

5

(5)

which is obtained by replacing the first equation in (4) with the first equation
minus the second.

In both the preceding examples we obtained, for each change of equations, a
new system which was equivalent to the preceding one and hence for which
the solutions to (1) were the same as the solutions to (5). We also saw that
the system of linear equations (5) in Example 3.1.1 was of the form Ix = b
and thus we immediately saw the solution. The system of linear equations (5)
of Example 3.1.2 is quite different and we will speak about it in Section 3.6

We’ll return, later on, to the actual solutions of the systems of equations
but, for now, let’s analyze the various steps we did in the calculations above.
One notices immediately that the modifications we made on the systems of
linear equations only involved the matrices which are part of the system and
certainly not the names of the unknowns.

It will be convenient to give a name to the transformations of the matrices
which correspond to the elementary transformations of the system of linear
equations.

We will call them elementary transformations of a matrix. To sum
up they are:
(a) The interchange of two rows.
(b) The multiplication of a row by a number different from zero.
(c) Replacing a row by the row you get adding the given row to a multiple

of another row.
Thus, the elementary operations on a system of linear equations Ax = b can
be done by doing elementary operations on the matrices A and b. To see how
that works, let’s revisit Example 3.1.1 and follow each step of that example.

The passage from (1) to (2) was done by interchanging the rows of A and
b and hence gives us the matrices

A2 =
(

1 1
2 −3

)
b2 =

(
4
2

)

which are, respectively, the matrices of coefficients and the constant term of
the system of linear equations (2). Analogously the passage from (2) to (3)
gives us the matrices

A3 =
(

1 1
0 −5

)
b3 =

(
4
−6

)

which are, respectively, the matrices of coefficients and the constant term of
the system of linear equations (3). The passage from (3) to (4) give us the
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matrices

A4 =
(

1 1
0 1

)
b4 =

(
4
6
5

)
which are, respectively, the coefficient matrix and constant term of the system
of linear equations (4). The passage from (4) to (5) gives us the matrices

A5 =
(

1 0
0 1

)
b5 =

( 14
5
6
5

)

which are, respectively, the coefficient matrix and constant term of the system
of linear equations (5), which give us the explicit solution to the system of
equations.

We know that mathematics is rich in surprises and abundant in marvels
and now it offers us one that is quite interesting. Let’s look again at Ex-
ample 3.1.1 and consider the identity matrix I of type 2. If we interchange
the two rows of I we get the matrix

(
0 1
1 0

)
which we will call E1. Now, let’s

multiply A and b on the left by this matrix. We get

E1A =
(

1 1
2 −3

)
E1b =

(
4
2

)

The amazing thing consists in the fact that these are, respectively, the coef-
ficient matrix and constant term of the system of linear equations (2), which
we can thus write as

E1A x = E1b

The rule of interchanging two rows is thus implemented by multiplying on
the left by the matrix we get by doing the corresponding interchange on the
rows of the identity matrix. There’s more: analogous matrices can also be
obtained for the other elementary operations on a system of linear equations.
In conclusion, we have at hand the following set of rules which are applicable
to any matrix, even if it is not square. Let A be a matrix with r rows.
(a) Denoting by E the matrix one gets by interchanging rows i and j of the

matrix Ir, the matrix product EA is the matrix one obtains by inter-
changing rows i and j of A.

(b) Denoting by E the matrix one gets by multiplying the i-th row of Ir

by the constant γ, the matrix product EA is the matrix one obtains by
multiplying the i-th row of A by the constant γ.

(c) Denoting by E the matrix one gets by adding to the i-th row of Ir the
j-th row of Ir multiplied by the constant γ, the matrix product EA is
the matrix one obtains from A by adding to its i-th row, γ times its j-th
row.

Given that we have called the above mentioned operations on the rows of
the matrix A elementary operations, the matrices that we obtain by carrying
out the above mentioned operations on the identity matrix will be called
elementary matrices. There is an elegant way to sum up what was said
above, namely:
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Every elementary operation on the rows of a matrix A can be
implemented by multiplying A on the left by the corresponding
elementary matrix.

Having recognized the importance of the elementary matrices, we should
examine them in some detail. Let’s consider the example of the elementary
matrix obtained by interchanging the second and fourth row of the identity
matrix I4, i.e.

E =

⎛
⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎠

If we perform the multiplication EE = E2 we obtain the identity matrix I4.
It’s easy to understand why since multiplying E on the left by E has the
effect of interchanging the second and fourth row of E and thus bringing us
back to the matrix we started with, namely the identity matrix I4.
Consider the example of the elementary matrix obtained by multiplying the
second row of the identity matrix I4 by the number 2. We get

E =

⎛
⎜⎝

1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠

and let’s consider the analogous operation in which the multiplication is by 1
2

E′ =

⎛
⎜⎝

1 0 0 0
0 1

2
0 0

0 0 1 0
0 0 0 1

⎞
⎟⎠

If we perform the multiplication E′E it’s clear we will get the identity ma-
trix I4. Now let’s consider the elementary matrix obtained by adding to the
second row of the identity matrix I4, 3 times the third row. The result is

E =

⎛
⎜⎝

1 0 0 0
0 1 3 0
0 0 1 0
0 0 0 1

⎞
⎟⎠

and if we consider the analogous elementary operation, in which the multi-
plication is done by −3, we get the elementary matrix

E′ =

⎛
⎜⎝

1 0 0 0
0 1 − 3 0
0 0 1 0
0 0 0 1

⎞
⎟⎠
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If we perform the multiplication E′E we obtain the identity matrix I4. Should
we be surprised? Certainly not, especially if we realize that adding to the
second row of the identity matrix the third row multiplied by −3 has the
effect of undoing the operation we made on the identity matrix of adding to
the second row 3 times the third row. In view of these examples, and the
discussion around then, the following fact should come as no surprise.
(1) Elementary matrices are invertible and have as inverses elemen-

tary matrices.
(2) If Ax = b is a system of r linear equations and the matri-

ces E1, E2, . . . , Em−1, Em are elementary matrices of type r, then
the system of linear equations

EmEm−1 · · ·E2E1Ax = EmEm−1 · · ·E2E1b

is equivalent to the system of linear equations Ax = b.
Let’s go over the various steps we performed in Example 3.1.1, the example
with which we began this section. The system of linear equations is

Ax = b where A =
(

2 −3
1 1

)
b =

(
2
4

)

The passage from (1) to (2) is obtained by multiplying the matrices A and
b on the left by the matrix E1 =

(
0 1
1 0

)
. We end up with the matrices

A2 =
(

1 1
2 −3

)
= E1A b2 =

(
4
2

)
= E1b

Analogously, the passage from (2) to (3) is obtained by multiplying the ma-
trices A2 and b2, always on the left, by the matrix E2 =

(
1 0

−2 1

)
. This time

we end up with the matrices

A3 =
(

1 1
0 −5

)
= E2A2 = E2E1A b3 =

(
4
−6

)
= E2b2 = E2E1b

The passage from (3) to (4) is obtained by multiplying the matrices A3 and
b3 on the left by the matrix E3 =

(
1 0
0 − 1

5

)
. We now end up with the matrices

A4 =
(

1 1
0 1

)
= E3A3 = E3E2E1A b4 =

(
4
6
5

)
= E3b3 = E3E2E1b

The passage from (4) to (5) is obtained by multiplying the matrices A4 and
b4 on the left by the matrix E4 =

(
1 −1
0 1

)
. This time we end up with the

matrices

A5 =
(

1 0
0 1

)
= E4A4 = E4E3E2E1A b5 =

( 14
5
6
5

)
= E4b4 = E4E3E2E1b
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The net effect of all of this is that the elementary operations on matrices
can be interpreted as products (on the left) by elementary matrices. In our
example we obtained A5 = I and hence we have an equivalent system with
an explicit solution. But, we note that with this way of doing things we
have gotten more than we might have suspected; in particular, we obtain
I = A5 = E4E3E2E1A and get an explicit description of the inverse of A as
a product of elementary matrices, namely

A−1 = E4E3E2E1

If we carry out the computations we get

A−1 =
( 1

5
3
5

−1
5

2
5

)
=

1
5

(
1 3
−1 2

)

The usefulness of the formalism of the product matrix interpretation of ele-
mentary row operations is that it has allowed us not only to find the solutions
of a system of linear equations, but at the same time to calculate the inverse
of the coefficient matrix of that system. This observation, we shall see, is of
great importance since the coefficient matrix of the system of linear equations
(1) is also the coefficient matrix of any system of linear equations of the type
Ax = b′, where we can vary b′ as we wish.

Such a system of linear equations has a unique solution, namely A−1b′.
Thus, solving one system of linear equations we have, at the same time, solved
many others. This is another manifestation of the power of mathematics. It’s
worth emphasizing the fact that this kind of result is possible because we
introduced the mathematical notation Ax = b and hence used the row by
column product.

3.2 Square Linear Systems, Gaussian Elimination

We begin with the general problem of solving a system of linear equa-
tions Ax = b, in the case where A is a square matrix. Such systems of
linear equations will be called square systems of linear equations.

When the coefficient matrix is invertible we have, in a certain sense, already
solved the problem. We have said that with the hypothesis that the coefficient
matrix is invertible there is a unique solution, namely x = A−1b. But, here we
have to be careful. Given a square system of linear equations, we don’t know
ahead of time if the coefficient matrix A is invertible or not. We will discover
that only after and not before we have solved the system of linear equations.
When we discover that A is invertible then certainly the solution will be
A−1b, but the fundamental point is that we don’t, in general, calculate the
inverse of A but rather calculate the solution A−1b. This last phrase does not
contradict what was said at the end of the last section. We emphasized the
fact that if we calculate A−1, we can easily calculate the solutions to all the
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systems of linear equations Ax = b, varying b as we wish. But the question
is very different if we want to calculate only the solutions to one system of
linear equations. Let’s return for a moment to Example 3.1.1. Recall that
after some transformations one arrives at the equivalent system{

x1 +x2 = 4
x2 = 6

5

(4)

At this point the coefficient matrix is not the identity matrix but the sys-
tem can be easily solved. In fact the second equation gives us that x2 = 6

5 .
Substituting that into the first equation we get x1 = 4− 6

5 = 14
5 .

This observation suggest the following method, which has come to be
known as the Gauss Method or the Method of Gaussian Reduction,
for solving the system of linear equations Ax = b.
(a) Using elementary operations on the matrix A, one obtains a matrix A′

which is upper triangular, i.e. a matrix with the property that all the
elements below the main diagonal are zero.

(b) If A′ has all the elements on the main diagonal non-zero, then the equiv-
alent system of linear equations A′x = b can be solved by back substi-
tution.

Example 3.2.1. Let’s examine, in detail, the system of linear equations that
grew out of Example 2.5.1. We want to solve the following system⎛

⎜⎜⎜⎝
1 1 0 1 1
1 1 1 0 0
0 1 1 1 0
1 0 1 1 1
1 0 0 1 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
1
1
1
1

⎞
⎟⎟⎟⎠

but remember that we are working in Z2 and thus that 1+1 = 0 and −1 = 1.
Inasmuch as a11 = 1, we can change things so that all the numbers under
a11, in the first column, are equal to zero. In fact, it’s enough to perform the
following three elementary operations: add to the second row the first row,
add to the fourth row the first row, add to the fifth row the first row. One
obtains the equivalent system⎛

⎜⎜⎜⎝
1 1 0 1 1
0 0 1 1 1
0 1 1 1 0
0 1 1 0 0
0 1 0 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
0
1
0
0

⎞
⎟⎟⎟⎠

Interchanging the second and the third rows we get⎛
⎜⎜⎜⎝

1 1 0 1 1
0 1 1 1 0
0 0 1 1 1
0 1 1 0 0
0 1 0 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
1
0
0
0

⎞
⎟⎟⎟⎠



58 3 Solutions of Systems of Linear Equations

and then we can make all the numbers under a22, in the second column, equal
to zero. In order to do that it’s enough to perform the following elementary
operations: add the second row to the fourth row and then add the second
row to the fifth row. One obtains the following equivalent system of linear
equations ⎛

⎜⎜⎜⎝
1 1 0 1 1
0 1 1 1 0
0 0 1 1 1
0 0 0 1 0
0 0 1 1 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
1
0
1
1

⎞
⎟⎟⎟⎠

Now let’s do the following elementary operation: add to the fifth row the
third row. We get the following equivalent system

⎛
⎜⎜⎜⎝

1 1 0 1 1
0 1 1 1 0
0 0 1 1 1
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
1
0
1
1

⎞
⎟⎟⎟⎠

Now doing back substitution one gets: x5 = 1, x4 = 1, x3 = 0− x4 − x5 = 0,
x2 = 1 − x3 − x4 = 0, x1 = 1 − x2 − x4 − x5 = 1 and thus, in conclusion,
that the solution is (1, 0, 0, 1, 1), which agrees with what we saw at the end
of Example 2.5.1.

Let’s take a moment to make a very important observation. In the preced-
ing example, we could do the back substitution as soon as we obtained a
coefficient matrix which was upper triangular with non-zero elements on the
main diagonal. The reader should make a sincere effort to understand the
importance of both of these facts, i.e. that the coefficient matrix has to be
upper triangular and that the elements on the main diagonal have to not be
zero.

Let’s examine another example.

Example 3.2.2. Non-invertible square matrices
Let’s consider the system of linear equations Ax = b, where

A =

⎛
⎝ 1 2 −4

3 0 2
5 4 −6

⎞
⎠ b =

⎛
⎝ 0
−1

1

⎞
⎠

Using the Gauss Method, we can replace the second row with the second row
minus three times the first row, and we can replace the third row with the
third row minus five times the first row. We get

A2 =

⎛
⎝ 1 2 −4

0 −6 14
0 −6 14

⎞
⎠ b2 =

⎛
⎝ 0
−1

1

⎞
⎠
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If we now replace the third row with the third row minus the second row, we
obtain

A3 =

⎛
⎝ 1 2 −4

0 −6 14
0 0 0

⎞
⎠ b3 =

⎛
⎝ 0
−1

2

⎞
⎠

At this point we see that the last equation has become 0 = 2. We can thus
conclude that the original system of linear equations doesn’t have a solution.

Did the reader notice that at each reduction step in the last example,
we were always using a non-zero entry on the main diagonal? When there
wasn’t one, we used the elementary operation of interchanging a pair of rows
in order to get one. If we had been unable to do this, the procedure would
have stopped. Thus, in Gaussian reduction, a nonzero entry on the main
diagonal plays a central role, in basketball terms one would say that it plays
a pivotal role. In fact, not surprisingly, such an entry is called a pivot.

We are now going to make a purely mathematical digression in order to
clarify an important point. We want to see how and when the Gauss Method
works and if it’s true that we can ultimately decide (using that method)
whether a matrix is invertible. So let A be a square matrix. An important
observation is the following.

If a row of a matrix consists of only zeroes then the matrix is
not invertible.

Mathematicians love to use proofs by contradiction in order to establish
certain facts. We now see a proof by contradiction in action so that the reader
can have an idea of how mathematics expands its area of control. In this case
we want to be completely certain that if a row of a matrix consists entirely of
zeroes then the matrix cannot be invertible or, equivalently, that if a matrix
is invertible then none of its rows is the zero row (i.e. in each row there is at
least one entry that is not zero). For those interested, here is the proof.

In order to prove the assertion one can reason in the following way. Suppose
that the row of zeroes in the matrix A is the ith row. If there were an inverse
B for A we would have AB = I and so the ith row of AB would not consist
entirely of zeroes. But, the ith row of AB is obtained by multiplying the
ith row of A by the columns of B, and thus the ith row of AB is the zero
row. We have arrived at a contradiction. In conclusion it is not possible for
A to have a row of zeroes. With a completely analogous proof we can prove
that if a column of A consists entirely of zeroes then A is not invertible.

Another important fact, whose easy proof we will give shortly (this time it
will be a direct proof rather than a proof by contradiction), is the following.

The product of two invertible matrices A and B is an invertible
matrix and one has (AB)−1 = B−1A−1.

To prove this we can proceed as follows.
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Let A and B be the two given matrices. It will be enough to verify the
equalities B−1A−1AB = B−1IB = B−1B = I and that will finish the
proof.

We can thus deduce that the matrix

A =

⎛
⎝1 2 −4

3 0 2
5 4 −6

⎞
⎠

of Example 3.2.2 is not invertible, given that A3 is not invertible and A3 is
the product of A by elementary matrices which are invertible. Notice also
that the system of linear equations Ax = b does not have any solutions,
inasmuch as the equivalent system of linear equations A3x = b3 contains the
equation 0 = 2.

Can one conclude, then, that if A is not invertible then the systems of
linear equations Ax = b never have a solution? The answer is definitely not,
i.e. we cannot draw such a conclusion from the fact that A is not invertible.
In fact, we will see very soon that the answer depends on the value of b. Just
think about the system of linear equations Ax = b where

A =
(

1 1
1 1

)
b =

(
2
2

)

which is equivalent to

A2 =
(

1 1
0 0

)
b =

(
2
0

)

and hence is equivalent to the single equation x1 + x2 = 2, which clearly
has an infinite number of solutions. In this case the square system of linear
equations which we started with is equivalent to a non-square system of linear
equations. We will discuss non-square systems of linear equations in the next
section.

We now make another important observation. In order to see directly if
a square matrix A of type n is invertible, we can reason in the following
way: our problem is to find a matrix X so that AX = In and we can view
this as an equation where A is known and X is unknown. By the definition
of equality for matrices, the columns of the two matrices AX and In have
to be the same. The j-th column of the matrix AX is Axj where xj is the
j-th column of the matrix X. So, the column Axj has to be equal to the
j-th column of the identity matrix. All this amounts to is trying to find a
solution to a system of linear equations whose coefficient matrix is A and
whose column of constant terms is the j-th column of In.

So, the possibility of finding X is equivalent to the possibility of solving
n systems of linear equations all having the same coefficient matrix A and
each having, as its vector of constants, the various columns of the identity
matrix In.
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It’s not hard to prove (but we won’t do it here) that a square matrix A
is invertible if and only if at every step of the Gaussian reduction one either
finds a pivot which is not zero or we can make an opportune exchange of
rows in order to obtain a non-zero pivot. Thus, with reduction and possible
exchanges of rows, one arrives at an upper triangular matrix with all the
elements on the main diagonal not zero.

On the other hand, Gaussian reduction and possible exchanges of rows
bring us, in any case, to an upper triangular matrix. Putting together all of
these facts we arrive at the following conclusion.

A square matrix is invertible if and only if the Gauss Method
transforms it into an upper triangular matrix which has all of
its elements on the main diagonal different from zero.

Thus we have revealed the mystery of the invertible matrix! When we start to
solve a square system of linear equations, using the Gauss Method, we don’t
know if the coefficient matrix is invertible or not. But, we discover that along
the way, precisely when we arrive at the triangular form. On the other hand,
if we are only interested in solving the system of linear equations and we
have arrived at a triangular form with all the elements on the main diagonal
non-zero, then while we know that the coefficient matrix is invertible, we can
solve the system by substitution without necessarily calculating the inverse.

3.3 Effective Calculation of Matrix Inverses

Having arrived at this point, it will be useful to stop and make some obser-
vations on the actual calculation of the inverse of a square matrix A, when
A is invertible of type n. At the end of the Section 3.1 we said that the
use of elementary matrices permits us to calculate the inverse of A and in
Section 3.2 we observed that, in general, one doesn’t actually calculate the
inverse in order to solve a system of linear equations, but rather one uses
the method of Gauss to do that. We have also observed that, at times, it
can be useful to calculate the inverse of A, above all if we want to solve sev-
eral systems of linear equations with the same coefficient matrix A. So, it is
reasonable to stop and see how one can actually calculate A−1. In a certain
sense we have already seen how to do this at the end of Section 3.1. In fact
we saw, with an example, that if we wrote down all the elementary opera-
tions E1, E2, . . . , Er that transformed the matrix A into the identity matrix,
then A−1 = ErEr−1 · · ·E1. But, in practice, we don’t have to multiply the
elementary matrices.

In fact, we saw at the end of Section 3.2 that the inverse of A may be
thought of as the solution to the matrix equation AX = In, where X is an
unknown matrix. We observe that from the relation AX = In one deduces

ErEr−1 · · ·E1AX = ErEr−1 · · ·E1In (1)



62 3 Solutions of Systems of Linear Equations

If we suppose that ErEr−1 · · ·E1A = In, then

X = ErEr−1 · · ·E1In = ErEr−1 · · ·E1 (2)

Let’s reread very carefully what is written in formulas (1) and (2). Note first
that we wrote: if ErEr−1 · · ·E1A = In then, in other words, if the elemen-
tary operations described by the elementary matrices E1, E2, . . . , Er−1, Er

bring A to the identity matrix, then the inverse of A (which is the matrix
ErEr−1 · · ·E1In) is the matrix that one obtains from the identity matrix by
performing on it the same elementary operations. We have discovered the
following rule.

If the elementary operations that we perform on the matrix A
to transform it into In are performed on the identity matrix,
then we get A−1.

Let’s look at an example in detail.

Example 3.3.1. Let’s calculate the inverse
We consider the following square matrix of type 3,

A =

⎛
⎝1 2 1

2 −1 6
1 1 2

⎞
⎠

Let’s put into practice what we said above and thus calculate the inverse
of A, assuming that A is invertible, something that (for the moment) we
don’t know.

So, we will try to transform A into an upper triangular matrix with all
diagonal entries equal to 1 using elementary operations and at the same time
use the same operations on the identity matrix.
We use the entry in position (1, 1) as a pivot and reduce to zero all the
elements of the matrix under the pivot⎛

⎝1 2 1
0 −5 4
0 −1 1

⎞
⎠

⎛
⎝ 1 0 0
−2 1 0
−1 0 1

⎞
⎠

Now interchange the second and third rows⎛
⎝1 2 1

0 −1 1
0 −5 4

⎞
⎠

⎛
⎝ 1 0 0
−1 0 1
−2 1 0

⎞
⎠

Now let’s use the position (2, 2) as a pivot and reduce the element in the
matrix under the pivot to zero⎛

⎝ 1 2 1
0 −1 1
0 0 −1

⎞
⎠

⎛
⎝ 1 0 0
−1 0 1

3 1 −5

⎞
⎠
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Now we are going to do something that we don’t need to do when we solve a
system of linear equations. Using the technique of reduction, we will transform
the triangular matrix into a diagonal matrix.
We use the entry in position (3, 3) as a pivot and reduce all the elements of
the matrix above the pivot to zero⎛

⎝ 1 2 0
0 −1 0
0 0 −1

⎞
⎠

⎛
⎝4 1 −5

2 1 −4
3 1 −5

⎞
⎠

We use the entry in position (2, 2) as a pivot and reduce the element above
it to zero ⎛

⎝1 0 0
0 −1 0
0 0 −1

⎞
⎠

⎛
⎝ 8 3 −13

2 1 −4
3 1 −5

⎞
⎠

We multiply the second and third rows by −1⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠

⎛
⎝ 8 3 −13
−2 −1 4
−3 −1 5

⎞
⎠

At this point we see that the matrix A has been transformed into the identity
matrix, while the identity matrix has been transformed into the matrix A−1.
We have the following equality

A−1 =

⎛
⎝ 8 3 −13
−2 −1 4
−3 −1 5

⎞
⎠

A particularly curious reader can easily verify the identity

AA−1 = A−1A = I3

and thus be completely convinced that we have, indeed, calculated the inverse
of A.

Example 3.3.2. Let’s calculate the inverse. . . if we can
Let’s consider the following square matrix of type 3

A =

⎛
⎝1 1 1

2 2 4
1 1 4

⎞
⎠

As in the preceding example, let’s try to calculate the inverse of A, assuming
that A is invertible (something we don’t know yet).

We thus try to do the elementary operations that will transform A into an
upper triangular matrix with all entries on the main diagonal equal to 1 and,
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at the same time, perform the same elementary operations on the identity
matrix.
Let’s get to work. We use the entry in position (1, 1) as a pivot and reduce
to zero all the elements under it⎛

⎝1 1 1
0 0 2
0 0 3

⎞
⎠

⎛
⎝ 1 0 0
−2 1 0
−1 0 1

⎞
⎠

We use the entry in position (2, 3) as a pivot and reduce all the elements
under it to zero ⎛

⎝1 1 1
0 0 2
0 0 0

⎞
⎠

⎛
⎝ 1 0 0
−2 1 0

2 −3
2

1

⎞
⎠

What’s happened? We see that the third row of the matrix is zero and so
the method of Gauss stops for lack of another pivot. Sadly we understand
that the matrix we started with is not invertible. I said “sadly” because the
operations we made on the identity matrix that brought it to the matrix on
the right, have been useless. A waste of effort! But, was there some way of
knowing beforehand that the matrix A was not invertible? In Section 3.7 we
will discuss an answer to that question.

3.4 How much does Gaussian Elimination cost?

Let’s make a Genoese digression in light of what we saw in Section 2.3 and
try to figure out the cost of the Gauss Method, i.e. let’s try to calculate how
many elementary operations one must perform in order to find the solution
to a square system of linear equations Ax = b when A is invertible of type n.
In order to simplify things a bit we will assume that there is no cost in
exchanging rows. We thus have to sum the costs of the following operations:

(1) reduction to one of the first pivot and reduction to zero of the elements
under the first pivot;

(2) reduction to one of the second pivot and reduction to zero of the ele-
ments under the second pivot;
. . .

(n-1) reduction to one of the (n − 1)-st pivot and reduction to zero of the
element under the (n− 1)-st pivot;

(n) reduction to one of the n-th pivot.

At this point the matrix is upper triangular with all elements on the main
diagonal equal to 1 and all that is left to do is figure out the cost of the
various back substitutions. More precisely, we have to evaluate how much
the following operations cost:
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(1) substitute the value of xn into the next to last equation and deduce
the value of xn−1;

(2) substitute into the third from last equation the values of xn and xn−1

and deduce the value of xn−2;
. . .

(n-1) substitute into the first equation all the values we’ve found for xn,
xn−1, . . . , x2 and deduce the value of x1.

Let’s first calculate the cost of the reduction to triangular form having all
elements on the main diagonal equal to 1.

(1) Reduction to one of the first pivot and to zero of the elements under
the first pivot.
We have to divide each entry of the first row by the pivot. This accounts
for n divisions. After this the pivot is now 1. For each row different from
the first we add an appropriate multiple of the first row to it. There
are n − 1 of these rows and for each we have to do n multiplications
and n additions. In addition to these operations on A we have to add
those on b. In other words we have to add 1 more division and n− 1
more multiplications and n− 1 more additions.

(2) Reduction to one of the second pivot and reduction to zero of the
elements under the second pivot.
Doing the same sort of reasoning as above one sees that we need to
do (n− 1) divisions, (n− 1)(n− 2) multiplications and (n− 1)(n− 2)
additions on A. On b we have to do 1 division, n − 2 multiplications
and n− 2 additions.
. . .

(n-1) Reduction to zero of the element under the (n− 1)-st pivot.
Again, reasoning as above, we see that we have to do 2 divisions, 2
multiplications and 2 additions on A. On b we have to do 1 division,
1 multiplication and 1 addition.

(n) Reduction to one of the n-th pivot.
We do 1 division on A and 1 division on b.

Adding it all up we find that the reduction to triangular form with all the
elements on the main diagonal equal to 1 requires:

n + (n− 1) + · · ·+ 1 divisions on A, and n divisions on b
n(n− 1) + (n− 1)(n− 2) + · · ·+ 2 multiplications on A, (n− 1) + · · ·+ 1

multiplications on b
n(n−1)+(n−1)(n−2)+ · · ·+2 additions on A, (n−1)+ · · ·+1 additions

on b.
One can show that

n + (n− 1) + · · ·+ 1 =
(n + 1)n

2
and that

n(n− 1) + (n− 1)(n− 2) + · · ·+ 2 · 1 =
n3 − n

3
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Putting these various pieces together we can evaluate how much it costs to
put the matrix in upper triangular form with all 1’s on the main diagonal.

The cost is: (n+1)n
2 divisions, n3−n

3 multiplications, and n3−n
3 additions.

Inasmuch as the multiplications and the divisions are the biggest part of this
sum, and for these the summand n3

3 is the most relevant, one says: to bring
a square matrix of type n to triangular form with 1’s on the main diagonal
has cost whose order of magnitude is O(n3

3 ).
To these operations we have to add the operations on b, which are n divi-

sions, n(n−1)
2

multiplications and n(n−1)
2

additions, whose total cost is O(n2

2
).

Now let’s calculate the cost of the substitutions.

(1) Substitution in the next to last equation to find the value of xn−1.
One has to do one multiplication and 1 addition.

(2) Substitution into the third from last equation to find the value of xn−2.
One has to do two multiplications and two additions.
. . .

(n-1) Substitution into the first equation in order to deduce the value of x1.
One has to do n− 1 multiplications and n− 1 additions.

In total the second part needs:
n− 1 + (n − 2) + · · ·+ 1 multiplications,
n− 1 + (n − 2) + · · ·+ 1 additions.
As we already noted

n− 1 + (n− 2) + · · ·+ 1 =
n(n− 1)

2

The conclusion of all these calculations is thus the following:
The Gauss Method costs

(n+1)n
2

+ n divisions
n3−n

3 + n(n−1)
2 + n(n−1)

2 = n3−n
3 + n(n− 1) multiplications

n3−n
3 + n(n−1)

2 + n(n−1)
2 = n3−n

3 + n(n− 1) additions

The most relevant summands continue to be n3

3 and hence one concludes by
saying that the Gauss Method costs O(n3

3 ), by which we mean that the
order of magnitude of the computational costs is n3

3 operations.
Surely some readers will want to ask the precise meaning of the statement

“the relevant part of the cost is n3

3 ” or that “the order of magnitude of the
cost is n3

3 ”. Let’s see if we can satisfy such readers. First consider that it is of
little importance what the cost is to solve a small system of linear equations,
for example with n = 2 or n = 3 equations, because in such cases the cost is
practically zero for whatever calculator we use.
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But, having an idea of the number of operations that one performs, or more
accurately that the calculator performs, becomes essential when n gets very
big. For example, when n = 100 the total number of multiplications is

1003 − 100
3

+ 100× 99 = 343, 200

If we make a partial count we see that 1003−100
3

= 333, 300, and 100× 99 =
9900 and that 1003

3
∼= 333, 333. The consequence of this calculation shows

that 1003

3 is a pretty good approximation to the correct answer. Moreover
n3

3 is a better and better approximation as n grows i.e. as the type of the
matrix grows. This is the reason why we say that the computational cost of
the Gaussian Method is n3

3 .
Let’s make another observation for the mathematically curious (I hope

that there are such among the readers of this book). Consider the se-
quence F (n) = n3/3

cost(n) , where cost(n) is the number of multiplications needed
to solve a square system of linear equations whose matrix is of type n. A math-
ematician observes that lim

n→∞
F (n) = 1 and this fact leads the mathematician

to conclude that the two functions have the same order of magnitude and thus
to say that the Gauss Method costs O(n3

3 ).

Another important aspect of the calculations is the choice of the pivot.
From a purely theoretical point of view the only important thing about the
pivot is that of being different from zero. But, as we saw in the introductory
chapter, there are ways and there are ways of being different from zero. All
kidding aside, we will see in a little bit what can happen when one uses
approximate arithmetic and chooses a pivot which is very small.

First, however, let’s make an observation which has enormous importance
in practical calculations. When we spoke of computational cost we always
made the hypothesis that the cost of each single operation didn’t depend
on that operation. But, it’s clear that such an assumption is valid only if
each number entered has a finite and constant cost. In order for that to be
the case we cannot move in a purely symbolic environment with integers or
rational numbers where approximation is not permitted. In fact, it is clearly
ridiculous to maintain that the cost of multiplying 2× 3 is the same as that
of multiplying 2323224503676442793× 373762538264396298389217128.

On the other hand, as we already noted in the introductory chapter, the use
of approximate numbers may have disastrous consequences if we don’t take
adequate precautions. We are not going to get into this sort of problem here,
but we’ll show (with an example) how the choice of the pivots in Gaussian
elimination requires special care if we use approximations.

Example 3.4.1. A small pivot
Let’s consider the following system of linear equations{

0.001x +y = 1
x +y = 1.3 (1)
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Let

A =
(

0.001 1
1 1

)
b =

(
1
1.3

)
x =

(
x
y

)
and write the system as Ax = b.

Let’s not allow more than three digits after the decimal point and so we
will use round off whenever there appear more than three digits after the
decimal point. Recall that the only condition that a pivot has to satisfy is
that of being different from zero, so we can use 0.001 as a pivot and the
matrix then transforms into

A2 =
(

0.001 1
0 −999

)
b2 =

(
1

−998.7

)

The second equation provides us with the solution y = 9987
9990 . Exactly what is

the value of 9987
9990

? In exact terms, the number is already correctly expressed
as a fraction. Its decimal representation is 0.999(699). Rounding up the three
digit decimal gives us 1 with an error of 1− 0.999(699) ∼= 0.0003, i.e. of the
order of three ten thousandths. We can go on to substitute y = 1 in the first
equation and we obtain the equation 0.001x + 1 = 1, from which we deduce
that x = 0.

Now, interchange the two equations and proceed using 1 as the pivot. One
gets

A =
(

1 1
0.001 1

)
b =

(
1.3
1

)

A2 =
(

1 1
0 0.999

)
b2 =

(
1.3
0.9987

)
The number 0.9987 is rounded up to 0.999 and so one obtains y = 1 which we
substitute into the first equation and that gives us x = 0.3. We thus obtain a
noteworthy discrepancy in the results. With the pivot 0.001 we obtained the
solution (0, 1), with the pivot 1 we obtained the solution (0.3, 1). But, what
is the exact solution? If we don’t round up, in the second case we obtain
the solution y = 0.9987

0.999
, and then substituting in the first equation we get

x = 1.3− 0.9987
0.999 . Thus, the exact solution is(10039

33330
,

9987
9990

)
Rounding off the result to three decimals we obtain the solution (0.301, 1).
The conclusion is that the second choice of the pivot brought us to a more
reasonable result while the first one did not because in the first case the pivot
we choose was small with respect to the other coefficients.

3.5 The LU Decomposition

It’s interesting to study a kind of decomposition of square matrices called the
LU decomposition or LU form. This plays an important role in the study of
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systems of linear equations especially (but not only) from the computational
point of view.

First of all where do the letters L and U come from? You don’t need a great
deal of imagination to understand that they come from the words Lower and
Upper. The name refers to the fact that one can decompose certain square
invertible matrices as the product of a matrix L, i.e. lower triangular, with a
matrix U , i.e. upper triangular. Let’s begin with the observation that such a
decomposition is not always possible.

Example 3.5.1. LU is not always possible
Let A =

(
0 1
1 0

)
and suppose that we have A = LU with L a lower triangular

matrix and U an upper triangular matrix. We thus have

L =
(

�11 0
�21 �22

)
U =

(
u11 u12

0 u22

)

From the equality A = LU one obtains

�11u11 = 0, �11u12 = 1, �21u11 = 1, �21u12 + �22u22 = 0

The first three equalities are incompatible because the second and the third
force �11 and u11 to be different from zero and that makes the first equation
not solvable. The conclusion is that A doesn’t have an LU decomposition.

Let’s suppose that we have a square matrix A with the property that
when we calculate the inverse the pivots can always be found without using
the operation of exchanging rows.

Suppose that E1, E2, . . . , Er are the elementary matrices which correspond
to the elementary operations which transform A into a matrix U which is
upper triangular, i.e. those operations that one does in the first part of the
Gauss Method. One has

ErEr−1 · · ·E1A = U (∗)

Given that the elementary matrices Ei correspond either to the product of a
row by a constant or to the sum of a row with some preceding row multiplied
by a constant, a moment of reflection will reveal that each matrix is lower
triangular. We note that this is not true in Example 3.5.1, since, in that
example we had to interchange rows to choose the first pivot. Now observe
that from formula (∗) we obtain

A = E−1
1 E−1

2 · · ·E−1
r U (∗∗)

Mathematicians assure us that the following two facts hold.

(1) The inverse of a lower triangular (upper triangular) matrix is
a lower triangular (upper triangular) matrix.
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(2) The product of two lower triangular (upper triangular) matri-
ces is lower triangular (upper triangular).

From these facts we can conclude that the matrix

L = E−1
1 E−1

2 · · ·E−1
r

is lower triangular and thus the formula (∗∗) can be read as

A = LU

which is exactly what we wanted. The more attentive reader should not have
any difficulty in proving the two facts we mentioned above. In fact, the second
follows directly from the definition of the product of matrices, while the first
can be proved following the reasoning we made in Section 3.3.

We conclude this section with some comments on the potential usefulness
of the LU decomposition. Suppose we would like to solve a system of lin-
ear equations Ax = b with A invertible and assume we know how to write
A = LU as above. In this case it is less work to solve the system then to
find the inverse of A, in the sense that the cost in terms of the number of
operations is less. We proceed in the following way.

We write the system as LUx = b. If we put Ux = y, then the original
system becomes Ly = b. First we solve Ly = b and obtain y = b′. Then we
substitute and obtain Ux = b′. Now it’s enough to solve the system Ux = b′

and that will give us the solutions to Ax = b, Hold on a minute, in order
to solve the original system of linear equations we had to solve two others!
What kind of saving is that?

In fact, the two systems we had to solve had coefficient matrices that were
triangular and thus, doing an analysis of the operations we need, like we did
in Section 3.4 we see that the cost is of the order of n2

2 multiplications, in
marked contrast with n3

3 in the general case. It’s not hard to convince yourself
that 2 · n2

2 is of lesser order than n3

3 .

3.6 Gaussian Elimination for General Systems of Linear
Equations

Not all systems of linear equations have as many equations as unknowns and
even in that case, the coefficient matrix is not always invertible. We have
arrived at the moment when we have to deal with the general problem of
solving any system of linear equations. As usual, we begin by looking at an
example.
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Example 3.6.1. A non-square system of linear equations
Let’s consider the following linear system⎧⎨

⎩
x1 + 2x2 + 2x3 + 7x5 = 1
−x1 − 2x2 − 4x3 + x4 − 2x5 = 0

x1 + 2x2 + 3x3 + 4x5 = 0
(1)

If we set

A =

⎛
⎝ 1 2 2 0 7
−1 −2 −4 1 −2

1 2 3 0 4

⎞
⎠ b =

⎛
⎝ 1

0
0

⎞
⎠ x =

⎛
⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎠

we can write the system as Ax = b. Quite naturally we find ourselves with
a non-square coefficient matrix A, just as we saw in Example 3.1.2. Recall
that we had left that example up in the air in Section 3.1, although we could
have acted upon it with elementary operations so as to simplify it. But, what
would be the point?

Let’s see. We’ll do a few elementary operations on A, trying to be as
methodical as possible. The reason for trying to be methodical is that we
would like to eventually do this sort of thing with a calculator and for that
reason we will want to construct an algorithm.

We know that we can replace the system (1) with an equivalent system
that is obtained by replacing the second equation with the sum of the first
and second equation. In this way we produce the matrices

A2 =

⎛
⎝ 1 2 2 0 7

0 0 −2 1 5
1 2 3 0 4

⎞
⎠ b2 =

⎛
⎝ 1

1
0

⎞
⎠

Now we can replace the third equation with the third equation minus the
first, thus obtaining the matrices

A3 =

⎛
⎝ 1 2 2 0 7

0 0 −2 1 5
0 0 1 0 −3

⎞
⎠ b3 =

⎛
⎝ 1

1
−1

⎞
⎠

Now we exchange the third equation with the second, thus obtaining the
matrices

A4 =

⎛
⎝ 1 2 2 0 7

0 0 1 0 −3
0 0 −2 1 5

⎞
⎠ b4 =

⎛
⎝ 1
−1

1

⎞
⎠

Replacing the third equation with the third equation plus twice the second
equation, we obtain the matrices

A5 =

⎛
⎝ 1 2 2 0 7

0 0 1 0 −3
0 0 0 1 −1

⎞
⎠ b5 =

⎛
⎝ 1
−1
−1

⎞
⎠
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The original system (1) is thus equivalent to the system⎧⎨
⎩

x1 + 2x2 + 2x3 + 7x5 = 1
x3 − 3x5 = −1

x4 − x5 = −1
(5)

At this point we can solve the system (5) by reasoning in the following way.
If we let x5 vary freely, in other words we transform x5 into a parameter, we
can solve the last equation in exactly the same way we did using the Gauss
Method on a square matrix. We can put x5 = t1 and obtain x4 = −1 + t1
from the third equation and x3 = −1 + 3t1 from the second. Substituting
into the first equation we obtain x1 +2x2 = 1− 2(−1 +3t1)− 7t1 = 3− 13t1.
Now we can freely vary x2 transforming it into a parameter. We put x2 = t2
and we obtain x1 = 3− 13t1 − 2t2.

We conclude by saying that the general solution of system (5) is

(3− 13t1 − 2t2, t2, −1 + 3t1, −1 + t1, t1) (∗)
We see that there are an infinite number of solutions depending on two pa-
rameters. We describe this by saying that there are infinity to the power
two solutions (and we write ∞2). In order to find a specific solution it is
enough to fix values for the parameters. For example, for t1 = 1 and t2 = 0
we obtain the solution (−10, 0, 2, 0, 1), while for t1 = 1 and t2 = 3 we get,
instead, the solution (−16, 3, 2, 0, 1).

This seems to be the right time to make an observation of primary im-
portance. Having arrived at the equation x1 + 2x2 = 3− 13t1, we could have
proceeded in an entirely different way. For example, we could have chosen x1

as the parameter and we would have then obtained, as a general solution, the
following

(t2,
1
2
(3− 13t1 − t2), −1 + 3t1, −1 + t1, t1) (∗∗)

The reader is invited to reflect on the fact that the two expressions (∗) and
(∗∗), although different, represent the same set of 5-tuples.

This example well illustrates the fact that the choice of the free variables
is not, in general, forced. However, there is something about them that doesn’t
change, and that is their number.

We have to be a bit careful in our way of saying things. If, for example,
we had a system of linear equations, with coefficients in Z2, whose solutions
depended on two parameters, then the enormous number of infinity to the
power 2 is nothing more than the more modest number 4. In this case, each
parameter can only assume two values, namely 0 and 1, and hence the pair of
parameters can only assume the four values (0, 0), (0, 1), (1, 0), (1, 1). Thus,
the phrase infinity to the power 2 really sounds well only in the cases for
which the number field from which we choose the coefficients is itself infinite.

Another important consideration is that even if there are more unknowns
than equations, this does not mean that the system must have solutions, as
the following example shows.
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Example 3.6.2. Many unknowns but no solution
Consider the following system of linear equations⎧⎨

⎩
x1 + 2x2 + 2x3 + 7x5 = 1
−x1 − 2x2 − 4x3 + x4 − 2x5 = 0

−2x3 + x4 + 5x5 = 0
(1)

Setting

A =

⎛
⎝ 1 2 2 0 7
−1 −2 −4 1 −2

0 0 −2 1 5

⎞
⎠ b =

⎛
⎝ 1

0
0

⎞
⎠ x =

⎛
⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎠

we can write the system as Ax = b. Replacing the second equation with the
sum of the first and second equations we produce the matrices

A2 =

⎛
⎝ 1 2 2 0 7

0 0 −2 1 5
0 0 −2 1 5

⎞
⎠ b2 =

⎛
⎝ 1

2
0

⎞
⎠

If we now replace the third equation with the third equation minus the second,
we obtain the matrices

A3 =

⎛
⎝ 1 2 2 0 7

0 0 −2 1 5
0 0 0 0 0

⎞
⎠ b3 =

⎛
⎝ 1

2
−2

⎞
⎠

The third equation 0 = −2 doesn’t have any solutions and, as a consequence,
the system (1), even though it has three equations and five unknowns, also
has no solutions.

In the next section a very important number, associated to a square matrix,
enters the scene. Whether this number is zero or not zero will furnish us with
fundamental information.

3.7 Determinants

We have seen many aspects of the theory of matrices and we have dwelt a
great deal on the importance of both the notion and calculation of the inverse
of a matrix. We have also seen that not every square matrix has an inverse.
It’s a natural question to ask if there is any way of knowing whether or not a
matrix has an inverse, without trying to calculate it. It would be nice if there
were some oracle that could tell us a priori if a given matrix has an inverse
or not.
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Given that science doesn’t put much trust in supernatural forces like ora-
cles, we can ask if there is some function which can give the desired response.
Let’s try to figure out in a logical way what could possibly give us such
information. Let’s consider a general matrix of type 2, i.e.

A =
(

a11 a12

a21 a22

)

and look at the number

d = a11a22 − a12a21

Let’s separate things into two cases
(1) The first column of A is zero.
(2) The first column of A is not zero.
In the first case we have already observed that the matrix is not invertible
and we see that d = 0 · a22 − a12 · 0 = 0.
In the second case we have two subcases

(2a) The element a11 �= 0.
(2b) The element a11 = 0.

In case (2a) we can use a11 as a pivot and with an elementary operation
transform the matrix into

A2 =

(
a11 a12

0 a22 −
a21

a11
a12

)
=

(
a11 a12

0 d
a11

)

If d �= 0 the matrix A2 is invertible because it is upper triangular with all
the elements on the main diagonal not zero. Thus, A is also invertible. If,
instead, d = 0, the matrix A2 is not invertible because it has a zero row, and
hence the matrix A is also not invertible.

In case (2b), a21 �= 0 is forced and so we can exchange the rows and obtain

A2 =
(

a21 a22

a11 a12

)

and now we can use a21 as a pivot and, with an elementary operation, trans-
form the matrix into

A3 =

(
a21 a22

0 a12 −
a11

a21
a22

)
=

(
a21 a22

0 − d
a21

)

Now we can argue as in case (2a) and conclude that if d �= 0 the matrix A3

is invertible and hence the matrix A is also invertible. If, instead, d = 0 then
the matrix A3 is not invertible because it has a row of zeroes, and hence
the matrix A is also not invertible. At this point we have exhausted all the
possible cases and we find, in our hands, the following unexpected fact.
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The matrix A is invertible if and only if a11a22 − a12a21 �= 0
We have found the much sought after oracle! The number a11a22 − a12a21

will decide if a type 2 matrix is invertible. If a11a22 − a12a21 = 0, then the
matrix A is not invertible while if a11a22 − a12a21 �= 0, then the matrix A is
invertible.
That number determines whether or not a type 2 matrix is invertible and
hence merits a name: it has come to be called the determinant of A and
denoted with the symbol det(A). Since every square matrix of type 2 has a
determinant we can speak of the determinant function.

But what does this function really measure? What we have seen about the
determinant up to this point is very important, but it is only part of the story.
Up to now we have seen the significance of whether or not the determinant is
zero or not zero. What about when this number is not zero, does the number
itself have some significance? What about if we have a square matrix of type
bigger than 2, does there exist a determinant for such a matrix? For the
moment we will only respond to the second question. The answer to it is
“yes” and in the case of a square matrix of type 3 one has

A =

⎛
⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠

det(A)=a11a22a33−a11a23a32−a12a21a33+a12a23a31+a13a21a32−a13a22a31

How can we ever expect to remember such a formula? And where does it even
come from? For the moment we will only make an observation. For example,
one can regroup the terms in the above formula and rewrite it as

det(A)=a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

This is called the expansion of the determinant along the first row, in the
sense that one can read it as the sum, with alternating signs, of the product
of the elements of the first row by the determinants of three matrices of
type 2. Moreover, the rule is simple to remember because the matrix whose
determinant is to multiplied by aij is the matrix one obtains by crossing out
the i-th row and j-th column of the matrix A.

Another interesting observation is that det(A) can be obtained by expand-
ing along any row or column. For example, if we regroup the summands in a
different way we get

det(A)=a11(a22a33 − a23a32) − a21(a12a33 − a13a32) + a31(a12a23 − a13a22)

One can define, in an analogous way, the determinant of any square matrix of
whatever type. Mathematicians have developed a theory which characterizes
the determinant function as the unique function which satisfies certain formal
properties. We’ll come back to that in detail in Section 4.6. For the moment we
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will have to be satisfied with knowing just a bit more about the determinant
and the importance of it being zero or not zero, at least in the case of square
matrices of type two. Some questions will still be left unanswered, such as
where did the formula come from and what does the value of the determinant
represent.

We are now ready to close this chapter and we are ending it with some
questions. As has already been said, in life and hence also in science, there
are more questions than answers. Fortunately, there will be some answers in
the next chapter.
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Exercises

Exercise 1. Solve the linear equation

2x1 +x2 +x3 +x4 −x5 = 0

Exercise 2. Solve the linear system{
2x1 +x2 = 0

x1 −x2 = 0

@ Exercise 3. Solve the system of linear equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 + 2
5x2 + 5x3 − 12

3 x4 + 2x5 − 4x6 = 0

1
2
x1 + 3x2 − x3 − 13x4 + 12x5 − 3x6 = 1

1
2
x1 − 11x2 − 3x3 + 13x4 − 7

2
x5 − 2x6 = 8

6x1 + 2
7
x2 + 1

2
x3 + 14x4 + 7x5 − 2x6 = 0

13x1 + x2 + 1
4
x3 − 2x4 + 22x5 − 13x6 = 7

9x1 + 1
7x2 + 12x3 + 13x4 − 7x5 − 2x6 = 1

2

@ Exercise 4. Let t ∈ Q be a parameter and consider the parameterized
system of linear equations⎧⎪⎨

⎪⎩
x + 2

5
y + z = 0

ty − 2
3
z = 0

tx − 8
5
y + 7

3
z = 1

in the unknowns x, y, z. Describe the solutions as the parameter t varies.

@ Exercise 5. Given the family of linear systems (in the unknowns
x, y, z, w) ⎧⎨

⎩
x + ay + 2z + 3w = 0

−by + 3z + 3w = 0
z + w = −1

describe the solutions as a, b ∈ Q vary.

@ Exercise 6. Let x, y, z, w be unknowns and consider the family of systems
of linear equations ⎧⎪⎪⎨

⎪⎪⎩
x + 2y + z = 0

ax + y + 2z + 2w = 0
−y + 3z + 3w = 0

z + 3w = 0
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(a) Describe the solutions to the linear system obtained by varying a ∈ Q.
(b) Let A be the coefficient matrix associated to the given system. Find

two matrices B, U ∈Mat3(R) such that B is invertible and U is upper
triangular and such that B U = A.

(c) Find the values of a ∈ R such that A is invertible.
(d) For those values of a for which A is invertible, find A−1.

Exercise 7. Given the following matrix

A =

⎛
⎝ 1 1 −2

1
2 −2 1

1 0 2
5

⎞
⎠

calculate the LU decomposition of A.

@ Exercise 8. Calculate the LU decomposition of the following matrix⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 2 1 2 1
1 10 −1 4 −10 4
2 −1 6 −1 9 −1
1 4 −1 7 −3 8
2 −10 9 −3 23 −7
1 4 −1 8 −7 36

⎞
⎟⎟⎟⎟⎟⎟⎠

Exercise 9. (Difficult)
Prove that a linear system with coefficients in Z2 cannot have exactly 7
solutions.

Exercise 10. (Difficult)

(a) Prove that the LU decomposition of a square matrix is not unique.
(b) Prove that if one asks, in addition, that L have all of its diagonal

elements equal to 1, then the LU decomposition (when it exists) is
unique.

Exercise 11. Given the family of matrices

Aa =

⎛
⎝ 0 2−a 1

a−1 1 0
a a 0

⎞
⎠

(a) Determine the values of a ∈ R for which the matrix Aa is invertible.
(b) Are there values a ∈ R for which one can find the LU decomposition

of Aa?
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Exercise 12. Let A be a square matrix of type n. Prove that if A has
n2 − n + 1 zero entries, then A is not invertible.

Exercise 13. In this exercise we will suppose that the matrices are
square, of type 2, with entries in Z2.

(a) How many matrices are there in Mat2(Z2)?
(b) How many matrices in Mat2(Z2) have determinant different from zero?

Exercise 14. Find, if it exists, the inverse of the matrix⎛
⎜⎜⎜⎜⎝

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

⎞
⎟⎟⎟⎟⎠

Exercise 15. Consider the general matrix in Mat2(R), i.e. the matrix

A =

(
a11 a12

a21 a22

)

Call d the determinant of A and suppose that d �= 0. Verify the following
equality

A−1 =
1

d

(
a22 −a12

−a21 a11

)
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Coordinate Systems

question: How much is a dollar worth?
answer: since you haven’t specified

a coordinate system (Au, Ag),
it’s impossible to give you an answer

Up till now we have spoken about algebraic objects, usually matrices and
vectors. But, at the beginning of this book (see Section 1.2) we gave exam-
ples of vectors such as force, velocity, acceleration, coming from physics. It’s
clear that we’ve used the word vector to mean at least two distinct things.
But how can physical or geometric objects have the same name as purely al-
gebraic ones? In this chapter we will study the how and the why and we will
discover an extraordinary activity of the mathematical arts: the construction
of models not only of physical, biological and statistical objects but also of
other mathematical objects. Said another way: mathematical entities, often
created to be models of something else, can themselves be modeled inside
mathematics.

This discussion is starting to get a bit too technical so let me use a simple
observation to give you some idea of where we are going in this chapter. It is
part of the cultural heritage of everyone that in order to measure something
it is necessary to have some standard unit of measure. Saying that a pole has
length 3 doesn’t mean anything to anyone, while it’s clear what is meant by
saying that a pole is three feet long. To say that one city is at a distance 30
from another doesn’t say much, but it’s clear what is meant by saying that one
city is at a distance of 30 kilometers from another. It is the lack of a standard
unit of measurement that stops us from understanding the meaning of the
numbers in the previous sentences.

There is, however, one enormous and absurd exception to this rule. From
the moment that money lost its fixed value in gold and silver, no one has
been able to respond to the question: What is a dollar (or a Euro, or a yen,
or a. . . ) worth? We thus live in an economic-financial world which lacks a
standard reference system.

Robbiano L.: Linear Algebra for everyone
c© Springer-Verlag Italia 2011
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In order to alleviate the stress which has surely been generated by this last
observation, I invite the reader to move quickly to the first section of this
chapter. But, first allow me to make the following striking statement: in
this chapter we will begin to see how to geometrize algebra and algebraicize
geometry.

4.1 Scalars and Vectors

In Section 1.2 we saw examples of vectors which come from physics. Now, we
return to those examples and examine, in detail, some everyday descriptions
of them.

– At the point P on the wall, the temperature is 15 degrees centigrade.
– A ball moves at a velocity of 15 centimeters a second as it passes the

point P on the table.
– The car was moved three meters.

We notice immediately that only the first sentence gives a complete descrip-
tion. The other two are ambiguous and, right away, you want to ask questions:
in which direction? in what sense or orientation? In order to give a thorough
response we can visualize the first situation in the following way:

•
P(15)

For the second situation we could use a representation of the type

•

15 cm/s

........................
........................

.........................
..........................................

................

For the third situation we could use a representation of the form

3m

........................
.........................

........................
..........................................

................

The second and third cases represent phenomena with more attributes, i.e.
they have not only a property representable by a number, but also one given
by a pointed line segment and one given by an arrow. The temperature, we
say, is a scalar quantity while the velocity and the orientation are called
vector quantities.

It is important to note that the number, that is the scalar quantity present
also in the vector quantity, could be represented in the length of the line
segment. Such an oriented segment has come to be known as a vector. Every
vector is thus characterized by a direction, an orientation and a modulus
(pl. moduli) or length of the segment which represents it.
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If I now say that the automobile was moved two meters along a given direc-
tion, with a specific orientation, then, knowing where it was previously we
know where it is now. The phenomenon is thus completely described by a
vector.

What’s the difference between the second and third cases? In the second
case I was careful to specify where I measured the velocity of the ball while in
the third case I could have specified any point as the original location of the
car. Without going into too many technical details we say that this difference
distinguishes the concept of based vector from that of free vector . In other
words, a free vector is nothing more than the collection of based vectors
you get by displacing a particular based vector in a parallel manner. This
is a particular case of an equivalence relation, a fundamental concept in
mathematics. Mathematicians say that one has imposed a kind of equality
on the set of based vectors, where classes of parallel based vectors, i.e. the
free vectors, are equal.

Let’s not get overwhelmed by the jargon and think that mathematicians
like abstract and abstruse concepts because mathematicians are snobs! The
relationship of equivalence that we just described precisely expresses that
which was said more vaguely earlier, i.e. the idea that parallel vectors may
represent the same thing. It’s just that, in mathematics, one needs to be
rigorous above all when one is discussing basic notions (which is exactly where
we are right now). If we didn’t do that, then as soon as we’d passed this initial
phase, we’d be unable to proceed correctly and we would eventually be forced
to go back and fix things up.

If, however, you really cannot stand the concept of free vectors, then we’ll
take away their freedom! In order to do that, we fix a point O and then every
free vector can be represented by a vector based at the point O. This is the
first important step in transforming geometry into algebra and thus permit-
ting us to use algebraic techniques to solve geometric problems. However,
other steps also have to be taken.

4.2 Cartesian Coordinates

In the previous section we have seen that free vectors can all be chained and
forced to have the same base point.

Now suppose that we are interested in free vectors that can move only in
one direction. If we think of them as all based at the same point O, we can
restrict these vectors to living on a line.

•

So, if we want to represent a vector it’s enough to say where to find the
“not O” end of the vector, i.e. to find where A is.
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•O A


Now, if we want to improve the usefulness of the line, we can give it a unit
of measure which will allow us to measure the length of the vector, i.e.
the length of the segment OA. However, there is still some ambiguity: if we
say that A is at a distance of 5 units from O we won’t know on which side
of O to look for A. It’s enough to add an orientation to the line and call
that orientation positive. The line is then called an oriented line and we’ve
completed our job.

•O A

unit of measure



...........................................

But, what “job” are we talking about? Observe that, with the properties our
line now has, every free vector that has the direction of the line is represented
by a vector based at O and hence is determined by its other end A. The length
of the segment OA, measured with the unit of measure, is a real number to
which we attach a positive sign if A is on the same side of the arrow which
indicates the orientation of the line, negative if it’s on the other side. It may
not seem that we have done much, but, in fact, we’ve made a fundamental
leap which now permits us to represent free vectors with a given direction,
first, as points on a line, and then, as positive or negative real numbers.

In this way we have given birth to, what is called in mathematics, a system
of cartesian coordinates on the line. What, then, is a system of cartesian
coordinates on a line? It’s a system constructed from: a line, a privileged point
(called O) on that line and referred to as the origin of the coordinate
system, a unit of measure which allows us to measure the lengths of
segments of the line and thus the moduli of vectors, and an orientation
that allows us to decide on which side of O the vector belongs.

For example, if we say that a vector on the line is represented by −5, what
we want to mean is that we have the vector based at O and having as its
other end a point at a distance 5 from O and which is on the side opposite
the privileged orientation of the line.

•OA

unit of measure

||||...................................... ............................ ........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...........................................

In this way we have succeeded in describing the whole class of free vectors
using just one real number. This whole discussion can be further condensed. In
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fact, the orientation of the line and the unit of measure can both be described
with one vector u1 which is based at O and whose length is exactly that of
the unit of measure. In this case, the vector u1 is called a unit vector. Our
system of coordinates on the line can be visualized in the following way

•Ou

and we’ll call it Σ(O; u1).
The fact that in the coordinate system Σ(O; u1) a given vector u has co-

ordinate a1 can be described using the equality u = a1u1.

But what happens when the vectors are in the plane? The basic idea is to
use two oriented lines which meet at a single point.

•O
x

y

............................ ................

.........................
................

.........................................................................................................................................................................................................................................................................................................................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
............
...........
............
...........
............
...........
...........
............
...........
............
...........
............
...........
............
...........
............
...........
............
...........
....

The two lines will be called the x-axis and the y-axis or sometimes simply
the coordinate axes. Each of these axes has its own unit vector and, if we
assume that the two lines are each given the same unit of measure then the
coordinate system is called monometric.
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The system of coordinates is denoted Σ(O; u1, u2). If we reason in the same
way that we did in the case of a line, we see that every free vector can be
represented by a vector based at O and thus is determined by its other end,
A. Now, look at the point A and draw two lines through it, each parallel to
an axis. We obtain two points Ax, Ay, as in the figure. Since the point 0 and
the two unit vectors u1 and u2 give each of the axes a coordinate system, we
can associate a real number to each of Ax and Ay. If those numbers are a1,
a2 we will say that the coordinates of the vector OA (or of the point A) are
(a1, a2). In this case, we will often write A(a1, a2).

If we let u denote the vector OA we can also write

u = a1u1 + a2u2

(even if, for the moment, it’s not clear what the symbol “+” in the equation
means – we’ll see what it means a little further on in Section 4.3).

The reasoning is similar in the case of space. Here we use three directed
lines which meet in one point and which are not, all three, in the same plane.
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The three lines will be called the x-axis, y-axis, and z-axis. The (unique)
plane which contains the x and y axes will be called the xy-plane, that which
contains the x and z axes the xz-plane and that which contains the y and z
axes, the yz-plane. These three planes are called the coordinate planes.
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The coordinate system is denoted Σ(O; u1, u2, u3). Reasoning as earlier, every
free vector can be represented as a vector based at O and thus is determined
by its other end, A. We then consider the point A and from it trace the three
planes which are parallel to the coordinate planes. We do this in such a way
so as to obtain three points Ax, Ay, Az, as in the figure. Given that the point
O and the three unit vectors give a coordinate system on each of the axes,
we may associate real numbers to the points Ax, Ay and Az. If those real
numbers are a1, a2, and a3, we will say that the coordinates of the vector OA
(or of the point A) are (a1, a2, a3). In this case we often write A(a1, a2, a3).

As in the case of the line and the plane, letting u denote the vector OA,
one may also write u = a1u1 +a2u2 +a3u3. Shortly, (in Section 4.3) we’ll see
why we can do this.

At this point it is worthwhile to stop a moment and reflect on what we
have done. In Section 1.2 we spoke of vectors and identified them with rows
of matrices or columns of matrices. Essentially, when we spoke of vectors, we
were thinking of them as ordered n-tuples of numbers. Furthermore, we said
that vectors and matrices are often mathematical models for real problems
and situations. We gave several examples.

What we have seen in this section can be interpreted in the same way. We
again speak of vectors, but this time with a geometric twist, vectors are now
represented by directed line segments on the line, in the plane or in space.
Using the tool called “coordinate system” we can, in turn, represent such
vectors using points and represent the points with real numbers (or pairs
of real numbers or triples of real numbers). The correspondence, which we
saw above, between free vectors on the line and real numbers, is called a
one to one correspondence because one may make the correspondence
in either way, i.e. from free vectors on the line to real numbers or from real
numbers to free vectors on the line. This correspondence also gives us a one
to one correspondence between real numbers and vectors based at O. The
same discussion works analogously with free vectors in the plane and ordered
pairs of real numbers and free vectors in space and ordered triples of real
numbers.

But then, just exactly what is a system of cartesian coordinates, for ex-
ample in the plane? It really is nothing more than a tool which allows us to
identify free vectors (or vectors all based at the same point) with pairs of real
numbers. Used in the opposite sense, it is a tool which allows us to identify
ordered pairs of real numbers with free vectors in the plane.

Thus, a coordinate system in the plane (and analogously on the line and
in space) allows us to use geometry to visualize, by means of vectors, ordered
pairs of real numbers. In fact, these are the same pairs of real numbers which,
in Section 1.2, we called vectors. Finally we have freed ourselves of a con-
siderable ambiguity. Now we understand better the double use of the word
vector !

A number, a pair of numbers, a triple of numbers, no matter what the
situation or the problem that presents us with them, can be visualized as
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vectors. The benefit to us is that we can use geometric facts or geometric
intuition to think about them. This realization constitutes one of the great
advances in mathematics. Let’s see how this works in practice: for every
equation with two unknowns we can consider the set of all of its solutions.
If we have fixed a coordinate system in the plane then that set of solutions
corresponds to a set of points in the plane and thus to a geometric figure.
This realization is a fundamental step in the geometrization of algebra (as
promised in the introduction).

At this point new, very natural, questions come up. The main one is: what
are the benefits of this theory? All this effort would seem excessive if, at best,
this whole geometric discussion allows us only to deal with triples of real
numbers. Will this ever help us, for example, handle the case of the 13-tuples
that came up in the example of the “football pool” (see Example 1.2.2)?

We will look for answers to these questions in what follows, but first let’s fix
a bit of terminology. The real numbers will be denoted with R, ordered pairs
of real numbers with R2 and ordered triples of real numbers with R3. The
geometric intuition which coordinate systems gave us, stops with the triples!
But, using the algebraic formalization there’s no problem in considering after
the triples, quadruples, quintuplets, sextuplets and so on. In what follows we
will freely construct and use the sets Rn for any natural number, n.

4.3 The Parallelogram Rule

In this section we begin to harvest some of the benefits we spoke about in the
last section. The geometrization of vectors gives us geometric ways of looking
at things which we had discussed previously only in purely algebraic ways.

First we must establish some notation. Given a coordinate system with
origin O then, if u is the free vector represented by the vector based at O
and having other end A then, from now on, we will usually write

u = A− O

The reason for using this strange symbol A−O to represent the vector will be
clear in a moment. But first I would like to linger a bit on the mathematical
audacity of what we have written! How can a free vector equal a based vector?
In fact, they cannot be the same and this way of writing things is a clear abuse
of notation. One could correctly write A−O ∈ u or u � A−O, since in fact
these both have the following meaning: A−O is in the class of the free vector
u. One uses the equality symbol but the real meaning is that of “belonging”.
To make an analogy with everyday things it would be like calling a person
who comes from Montreal “a Montreal”, instead of a Montrealer.
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If we accept this abuse of notation then we can also accept writing u = R−B
to express the fact that u is the free vector represented by the vector based
at B and having its other end at R. An important understanding comes
from looking carefully at the figure above. Let’s “read” it in the following
way: suppose we are given a cartesian coordinate system (we haven’t drawn
the unit vectors on each axis in order not to clutter the diagram) and in it
two free vectors, represented as u = A−O and v = B −O. Suppose that the
coordinates of A and B are, respectively, (a1, a2) and (b1, b2). The point R,
then, is that unique point so that the OARB is a parallelogram.

And now we notice immediately that u = R − B, v = R − A, and as a
consequence, the coordinates of the point R are (a1 + b1, a2 + b2).

The algebraic evidence and the experimental convenience induced us to
define the sum of vectors and of matrices in the most natural way possible,
i.e. that of summing the entries term by term. This sum now has a geometric
interpretation as well. Having used a coordinate system to identify vectors
with pairs of real numbers, the sum made by adding the coordinates of the
vectors, term by term, corresponds to the sum of vectors made according to,
what is called, the parallelogram rule as illustrated in the figure above.
We have achieved our first important goal. I never get tired of repeating that,
as we have just seen, using cartesian coordinate systems opens the door to
the algebraization of geometry and to the geometrization of algebra.

Another observation follows from the considerations above. Returning to
our figure, we said that v = B − O = R − A and that made us reflect upon
the seemingly careless use of the equality symbol.

But, if we consider the coordinates of the points in play, we observe that
there are honest equalities in the expressions (b1, b2) − (0, 0) = (b1, b2) and
(a1 + b1, a2 + b2)− (a1, a2) = (b1, b2). This explains the utility of the symbol
R − A to represent both the vector based at A and having other extreme
at the point R, with the free vector associated to it. The parallelogram rule
which we have just seen, guarantees that the coordinatesof such free vectors
are exactly the differences of the coordinates of R and A.
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4.4 Orthogonal Systems, Areas, Determinants

Now we will consider a situation analogous to that of the previous section,
but in the context of a cartesian system of coordinates which is monometric
and orthogonal, i.e. a system of cartesian coordinates such that the axes are
pairwise orthogonal and the unit of measure on each axis is the same.
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If the coordinates of A are (a1, a2) and the coordinates of B are (b1, b2)
then, as we have already observed and discussed in the previous section, the
coordinates of the point R are (a1 +b1, a2 +b2), thus the area of the rectangle
with two sides on the coordinate axes, determined by the points O and R is
(a1 + b1)(a2 + b2). Now we want to calculate the area of the parallelogram
P, i.e. the parallelogram defined by u and v. We observe immediately that
the two rectangles R, R′ have equal areas, as do the two triangles T1, T ′1 and
also T2, T ′2 . A simple calculation shows

Area(P) = (a1 + b1)(a2 + b2) − 2 Area(R)− 2 Area(T1) − 2 Area(T2)

and thus

Area(P) = (a1 + b1)(a2 + b2)− 2a2b1 − a1a2 − b1b2 = a1b2 − a2b1

It seems like magic but it’s true! We are dealing with a determinant! In fact,
we can write

Area(P) = det
(

a1 b1

a2 b2

)
We have given a geometric interpretation to the concept of the determinant
of a 2 × 2 square matrix whose entries are real numbers. If we read the two
columns of the matrix as the coordinates of two vectors in a cartesian coordi-
nate system with orthogonal and monometric axes, we get the following rule.

The absolute value of the determinant of a 2× 2 square matrix
with real entries coincides with the area of the parallelogram
defined by the two vectors whose coordinates, in an orthogonal
monometric cartesian coordinate system for the plane, form the
columns of the matrix.
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This answers a question which we left in the air at the end of the last chapter.
As the attentive reader will have noticed, a small observation still remains
before we can close this discussion. Area is, by its very nature, described by
a non-negative number, while the determinant can be negative. This is why
the absolute value of the determinant is the area mentioned above. The sign
of the determinant indicates the orientation of the angle formed by the first
and second vector. The sign is positive if the direction that one traverses,
going from the first column to the second, is counterclockwise, negative if the
direction is clockwise. We’ll have a bit more to say about this in Section 6.2.
In a perfect analogy with the case of the plane, one has the following rule.

The absolute value of the determinant of a 3 × 3 matrix with
real entries coincides with the volume of the parallelepiped de-
fined by the three vectors whose coordinates, in an orthogonal
monometric cartesian coordinate system, form the columns of
the matrix.

4.5 Angles, Moduli, Scalar Products

We’ve had success in giving the determinant a geometric significance and
now we would like to continue on the path we have taken and push ahead
with the geometrization of some algebraic concepts and the algebraization of
some geometric concepts.

Keep in mind that in this section we will always work with an orthogonal
monometric cartesian coordinate system.

A very natural question is the following: what is the length of a vector?
And if the vector is represented in our coordinate system as u = (a, b) can
we find the length of u in terms of a and b? This is, like all questions, easy
to ask – but fortunately, this time the answer is also easy to find.
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It’s enough to use Pythagoras’ Theorem to deduce that the length of u is√
a2
1 + a2

2 . We will indicate the length of a vector u by the symbol |u|, which
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will be called the modulus of u. Thus, if u = (a1, a2) one has

|u| =
√

a2
1 + a2

2

In space we use exactly the same reasoning and if u = (a1, a2, a3) we get

|u| =
√

a2
1 + a2

2 + a2
3

It’s clear that the length of a vector does not depend on which based vector
is chosen from the class of a free vector. Mathematicians would say that the
length is an invariant of the equivalence class, a sure way to scare non-experts!
However, an invariant is precisely that and, in this case, the invariance is
based on empirical considerations, i.e. moving a vector to a position parallel
to itself doesn’t change its length (Einstein permitting!). In particular, if
u = B − A and if A = (a1, a2), B = (b1, b2), then

|u| =
√

(b1 − a1)2 + (b2 − a2)2

This formula may also be read as a formula describing the distance between
the points A, B in the plane.

If u = B −A and if A = (a1, a2, a3), B = (b1, b2, b3), then

|u| =
√

(b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2

which can be read as a distance formula between points A, B in space.
If a vector u is not the zero vector than there is a well defined vector which

has the same direction but has unit length. That vector is called the unit
vector in the direction of u or the normalization of u and is denoted
by normal(u).

From the definition we get the formula

normal(u) =
u

|u|
We’re on a roll now and we don’t want to stop yet. Another property which
is invariant under parallel displacement is that of the angle between two
vectors. Is there some way to calculate that using the coordinates only?
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In order to solve this problem we ought to use an idea and formulas already
well known to mathematicians. This is analogous to what we did for deter-
minants, which were first defined algebraically, with their geometric nature
being only later revealed. In this instance I am asking that the reader make an
extra effort so he or she can better understand how mathematical reasoning
works.

Let’s remember that our problem is to express the angle between two vec-
tors using their coordinates. In particular, given an orthogonal monometric
cartesian coordinate system, we would like to be able to decide, knowing
only their coordinates, if two vectors are orthogonal. What follows is typical
mathematical reasoning.

Let’s suppose we have an orthogonal monometric system of carte-
sian coordinates and also two free vectors u and v in the plane (the
reasoning in space is completely analogous). We draw them as the
vectors A− O and B − O (see the figure above). From B we drop a
perpendicular to the line through u and obtain the point of projec-
tion H . We choose the point K so that OHBK is a rectangle. Let’s
remember that what we are after is a function ϕ which associates to
every pair of vectors a real number. What sort of properties should
the function ϕ have? If ϕ(u, v) is supposed to somehow describe the
angle between the two vectors formed by u and v, then we could
require the following:
(a) If u, v are orthogonal, then ϕ(u, v) = 0.
We understand right away that this restriction on ϕ is not enough.
Looking at the figure above, we observe that

H − O = (|v| cos(ϑ)) normal(u)

and thus, in some way, we should bring the cosine of the angle ϑ into
play. On the other hand, the figure shows that we have the equality

v = (H −O) + (K −O)

Let’s suppose that our function has the following property.
(b) If v = v1 + v2, then ϕ(u, v) = ϕ(u, v1) + ϕ(u, v2).
If that were the case, we could deduce the equality

ϕ(u, v) = ϕ(u, H −O) + ϕ(u, K −O)

But, the second summand is 0, by the property (a) and thus one has

ϕ(u, v) = ϕ(u, H −O) = ϕ(|u| normal(u), |v| cos(ϑ) normal(u))

Let’s now suppose that our function has yet another property.
(c) If u = cu′, then ϕ(u, v) = c ϕ(u′, v) and analogously if v = dv′,

then ϕ(u, v) = d ϕ(u, v′).
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In that case, one would have the equality

ϕ(|u| normal(u), |v| cos(ϑ) normal(u)) =

|u||v| cos(ϑ)ϕ(normal(u), normal(u))

Let’s also suppose that our function has the following property
(d) ϕ(u, u) = |u|2.
Then, one would have ϕ(normal(u), normal(u)) = 1 and hence the
equality

ϕ(u, v) = |u||v| cos(ϑ)

The above mentioned formula ϕ(u, v) = |u||v| cos(ϑ) completely sat-
isfies the requirement of giving information on the angle between u
and v. But, we asked for a function ϕ(u, v) that expressed this infor-
mation using the coordinates of u and v. It looks as if we have not
made any progress, but indeed we have. This is not the time to give
up! Now, in fact, the problem has become the following: does there
exist a function of the coordinates of the two vectors which satisfies
all the properties we have specified?
Notice one subtle point: it will be enough to prove that there is a
function; the uniqueness of such a function comes free of charge, given
that, whatever the formulation of the function we give, it has to satisfy
ϕ(u, v) = |u||v| cos(ϑ). Thus the problem is simply to examine very
carefully the requirements we put on our function. Let’s look at those
again.
(1) If u, v are orthogonal, then ϕ(u, v) = 0.
(2) The function ϕ(u, v) should be linear both in u and in v.
(3) ϕ(u, u) = |u|2
Condition (2) (we’ll see, a bit later on, what this condition means) ab-
sorbs the conditions (b) and (c) which we had introduced earlier. We
are finally ready to bring the coordinates into play. If, in our mono-
metric, orthogonal cartesian coordinate system one has the equality
u = (a1, a2), v = (b1, b2), then we obtain

|u+v|2 = (a1+b1)2 +(a2 +b2)2 = (a2
1 +a2

2)+(b2
1 +b2

2)+2(a1b1+a2b2)

In other words

|u + v|2 = |u|2 + |v|2 + 2(a1b1 + a2b2)

On the other hand, Pythagoras’ Theorem says that |u + v|2 = |u|2 +
|v|2 if and only if u, v are orthogonal. Thus, the quantity a1b1 + a2b2

immediately becomes relevant. It is a function of the coordinates
which, when it takes on the value 0, tells us that the two vectors are
orthogonal i.e. satisfies property (1). Let’s see if we have at hand the
function we have been searching for. We put

ϕ(u, v) = a1b1 + a2b2
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Now the road is easy; we are going downhill. This function, which
satisfies property (1), satisfies (2) and (3). Let’s check, for example,
(3). If u = (a1, a2) then

ϕ(u, u) = a1a1 + a2a2 = a2
1 + a2

2 = |u|2

It is equally easy to verify (2). This then solves our problem.

The reasoning above has brought us to a solution and has also shown us
that there is no other solution. The importance of the function we found is,
therefore, enormous and to emphasize that we give it a particular name and
a particular symbol.

If you haven’t followed all the details of the discussion above, don’t worry.
What must be absolutely clear, however, is that we have defined a function
that, given two vectors u = (a1, a2), v = (b1, b2), provides us with a number,
namely a1b1 + a2b2. This function we indicate by writing u · v and we say it
is the scalar product (sometimes dot product) of u and v. We have the
formula

u · v = a1b1 + a2b2 = |u||v| cos(ϑ) (∗)
Notice that, using this formula for the scalar product, we can also deduce the
values of |u| and |v|, in fact

|u| =
√

u · u
In the case of space one proceeds in exactly the same way to obtain the
analogous formula: if u = (a1, a2, a3), and v = (b1, b2, b3), then

u · v = a1b1 + a2b2 + a3b3

Also in this case u · v is called the scalar product of u and v. The formula
analogous to (∗) is also valid, namely

u · v = a1b1 + a2b2 + a3b3 = |u||v| cos(ϑ)

In this section the reader has seen typical mathematical reasoning at work. I
invite the reader, even one not very interested in mathematics, to meditate
a bit on this system of formal logic. In a world rich with uncertainty it is
helpful to recognize the strength of certain logical aspects of human thought.

4.6 Scalar Products and Determinants in General

Having arrived at this point, it’s necessary to pause and formulate some
general ideas regarding scalar products and determinants, both of which are
fundamental mathematical concepts. We have to say that originally both were
interpreted geometrically, but naturally only in the cases of vectors having
two or three components. If we look at the definition of the scalar product,
however, we see immediately that it is possible to forget the motivations and
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geometric interpretations which were useful for geometrizing R2 and R3, and
freely move to any Rn.

In fact, if u = (a1, a2, . . . , an) and v = (b1, b2, . . . , bn) then it’s not difficult
to generalize the definition already given and write

u · v = a1b1 + a2b2 + · · ·+ anbn

calling it still the scalar product. What are the most relevant properties of
the scalar product?

(1) Symmetry, i.e. u · v = v · u for every u and v.
(2) Bilinearity, i.e. linearity in both coordinates

(a1u1 + a2u2) · v = a1(u1 · v) + a2(u2 · v)
u · (b1v1 + b2v2) = b1(u · v1) + b2(u · v2).

(3) Positivity, i.e. u · u = |u|2 ≥ 0 and u · u = 0 if and only if u = 0.
There is a fundamental relation, which we won’t prove here, called the
Cauchy-Schwarz inequality, which says that

|u · v| ≤ |u||v|

and from which it follows, in the case that both of the vectors u, v are not
zero, that

−1 ≤ u · v
|u||v| ≤ 1

This inequality permits us to read u·v
|u||v| as the cosine of an angle! The frigid

abstraction of the Cauchy-Schwarz inequality allows us to consider angles
between two vectors which live in non-physical spaces like Rn, with n as
big as we like. In particular we can now speak of the orthogonality of
two vectors in Rn, in the sense that we say that two vectors u and v are
orthogonal if u · v = 0. For example, the two vectors u = (1,−1,−1, 0, 3)
and v = (−1, 0,−1, 5, 0) of R5 are orthogonal. And we don’t even have any
need for systems of coordinates, given that the scalar product is a function
of the components of the two vectors. Mathematicians can really go quite
far with a bit of mathematical fantasy coupled with some logical capacity.
Moreover, the most noteworthy thing about all of this abstraction is that
it is immediately useful for important real world applications. For example,
modern statistics is permeated by these concepts.

It’s a bit more difficult to generalize the concept of determinant to the case
of a square matrix of any size. In what follows we will give the definition and
the principal properties without much comment, except for the important
comment that (as in the case of the scalar product) the properties determine
the definition in a unique way. This is yet another aspect of the harmony
which is pervasive in the most important mathematical constructions.

Let’s recall that a permutation of the natural numbers {1, 2, . . . , n} is
an arrangement of those n numbers i.e. what mathematicians would describe
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as a 1-1 correspondence between the set {1, 2, . . . , n} and itself. For example,
all the permutations of the set (1, 2, 3) are

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)

You can see right away that the number of permutations of {1, 2, . . . , n} is
precisely n · (n− 1) · · · 2 · 1, i.e. the product of the first n natural numbers
(this number is usually written as n! and called n factorial).

If π is the name of a permutation of (1, 2, . . . , n), then π is usually written
as (π(1), π(2), . . . , π(n)). The sign of the permutation π is by definition either
+ or −, according to whether the number of interchanges necessary to bring
(π(1), π(2), . . . , π(n)) into their natural order is even or odd. The operation
of bringing the numbers (π(1), π(2), . . . , π(n)) into their natural order can be
done with different choices of interchanges; however, one can prove that the
parity of the number of interchanges is invariant. The reader is invited to try
this on an example in order to convince himself or herself of this fact.

For example, the sign of (1, 3, 2) is −, because it is enough to exchange the
3 with the 2 in order to obtain (1, 2, 3); on the other hand the sign of (3, 1, 2)
is +, because with two interchanges one obtains (1, 2, 3) (do you see at least
two different ways to bring this permutation into its natural order?).

Now let A = (aij) be any square matrix of size n × n. For each per-
mutation π = (π(1), π(2), . . . , π(n)) of {1, 2, . . . , n} consider the product
a1π(1)a2π(2) · · ·anπ(n) multiplied by +1 or −1, depending on the sign of the
permutation π. There is no standard terminology for this product but we
will call this number a derived product of A. The sum of all the n! de-
rived products of A (one for each permutation of {1, 2, . . . , n}) is the number
det(A), which is called the determinant of A.

One can easily check, for example, that the determinant of a matrix of
size 2 × 2 or of size 3 × 3 is exactly the same as the definition we gave in
Section 3.7.

As you can imagine, the cost of calculating the determinant, using just
the definition, would be prohibitive. For example, to use the definition to
calculate the determinant of a 20 × 20 matrix, you would have to calculate
20! derived products. But, 20! = 2, 432, 902, 008, 176, 640, 000, i.e. around two
thousand five hundred million billions! (the exclamation mark here doesn’t
mean factorial just shock at how fast these numbers grow). Even if the life
of the planet depended on it we would never be able to calculate that deter-
minant using just the definition.
But we will see that the definition, accompanied by a bit of reasoning, will
let us discover notable properties of the determinant function with which we
will do great things. Below I’ll list some of those properties but I will skip
the proofs as they require varying degrees of ability. I’ll leave it to the reader
to choose, according to his or her taste, which of these properties to try and
prove. I hope that the results are encouraging.

(a) If we interchange two rows or two columns of the matrix A
we only change the sign of the determinant. Thus, if A has
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two rows or two columns which are equal then the determi-
nant has to be zero.

(b) If a single row or single column of the matrix A is multiplied
by a constant c, then the determinant is multiplied by c.

(c) If we add to a row of the matrix A a multiple of another
row then the determinant doesn’t change. The same thing
is true for the columns.

(d) If A is an upper or lower triangular matrix
then

det(A) = a11a22 · · ·ann

In particular, det(In) = 1
(e) We have det(Atr) = det(A).
(f ) If A and B are two square matrices of size n, then

det(AB) = det(A) det(B)

This last is called Binet’s Theorem. Its proof is not easy.
(g) A square matrix with entries in some field of numbers (for

example Q or R) is invertible if and only if its determinant
is different from zero.

We note that, as happened in the process of solving linear equations, the
properties mentioned above permit us to perform the operations which will
reduce a square matrix into one in triangular form keeping track, at the same
time, of changes to the determinant. Then we can apply rule (d) above.

We note with satisfaction that if we return to the case of a matrix of size
20 × 20 and calculate the cost of reducing the matrix to triangular form,
one sees that the total cost is on the order of 203

3 multiplications, which is
around 3, 000 a good deal less that 20! (in this case the exclamation point does
signify factorial and also. . . satisfaction because we have gotten around a se-
rious problem). Let’s see a concrete example where we apply the observations
above.

Example 4.6.1. Let’s consider the following matrix with rational numbers
as entries

A =

⎛
⎜⎜⎜⎜⎝

1 2 1 5 1
1
2

2 1 −1 2
3 2 2

3
1 1

1 1 2 1 2
2 2 3 3 4

⎞
⎟⎟⎟⎟⎠

Let’s do some calculations. With only elementary transformations of the type
that don’t change the determinant, we can transform the matrix A into the



4.7 Change of Coordinates 99

matrix

A2 =

⎛
⎜⎜⎜⎜⎝

1 2 1 5 1
0 1 1

2 −7
2

3
2

0 −4 −7
3
−14 −2

0 −1 1 −4 1
0 −2 1 −7 2

⎞
⎟⎟⎟⎟⎠

then into the matrix

A3 =

⎛
⎜⎜⎜⎜⎜⎝

1 2 1 5 1
0 1 1

2 −7
2

3
2

0 0 − 1
3 −28 0

0 0 3
2 −15

2
5
2

0 0 2 −14 5

⎞
⎟⎟⎟⎟⎟⎠

and now into the matrix

A4 =

⎛
⎜⎜⎜⎜⎜⎝

1 2 1 5 1
0 1 1

2 −7
2

3
2

0 0 −1
3 −28 4

0 0 0 −267
2

41
2

0 0 0 −182 29

⎞
⎟⎟⎟⎟⎟⎠

and finally into the matrix

A5 =

⎛
⎜⎜⎜⎜⎜⎝

1 2 1 5 1
0 1 1

2 −7
2

3
2

0 0 − 1
3 −28 4

0 0 0 −267
2

3
2

0 0 0 0 281
267

⎞
⎟⎟⎟⎟⎟⎠

Using the various rules we listed above, we know that det(A) = det(A5). But,
A5 is a triangular matrix and so we can use rule (d). We multiply together
the elements of the diagonal and conclude that the det(A) = 281

6 .

4.7 Change of Coordinates

Let’s turn, for a moment, to the case of coordinates in the plane which we
will use to motivate the more general situation of coordinates in Rn. The
question that we ask ourselves is the following: what happens when we are
dealing with two distinct coordinate systems? More specifically, what is the
relationship between the coordinates of the same vector in the two systems?
Now, suppose that we are dealing with two systems Σ(O; u1, u2) and
Σ(P ; v1, v2). First of all we observe that we can break the problem down into
two simpler problems, using the ancient, but always efficient strategy of divide
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and conquer. First we compare the system Σ(O; u1, u2) with Σ(P ; u1, u2) and
then Σ(P ; u1, u2) with Σ(P ; v1, v2). In the first comparison we have a system
and its translation, which we can visualize using the following figure.
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The parallelogram rule tells us

A− O = (A− P ) + (P −O)

If the coordinates of A with respect to the system Σ(O; u1, u2) are (a1, a2)
and with respect to Σ(P ; u1, u2) are (b1, b2) and if the coordinates of P with
respect to Σ(O; u1, u2) are (c1, c2), then one has(

a1

a2

)
=

(
b1

b2

)
+

(
c1

c2

)
(∗)

More interesting, but less obvious, is the second comparison. Now we have
to come to grips with the problem of change of basis, i.e. where the origin of
the coordinate systems is the same but both the directions of the coordinate
lines and the size of the unit vectors may have changed.

In order to deal with this problem it will be good to establish notation
which will be appropriate for the problem at hand and also suitable for future
generalizations. Once we have said that the origin, P , of the two coordinate
systems is the same, we then have to compare the coordinates of a vector
with respect to Σ(P ; u1, u2) with the coordinates of the same vector with
respect to Σ(P ; v1, v2). We’ll indicate with F = (u1, u2) the pair of vectors
of unit length of the first system and with G = (v1, v2) the pair of vectors of
unit length of the second system.

We have already observed that if a vector v has coordinates (a1, a2) with
respect to the first system, then this can be interpreted by writing

v = a1u1 + a2u2 (1)

Now comes the good idea. The quantity a1u1 + a2u2 can be interpreted as
the row by column product of F with

(
a1
a2

)
. This fact suggests that we use the

symbol

MF
v =

(
a1

a2

)
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which is particularly expressive, since it tells us that (a1, a2) are the coordi-
nates of v with respect to the system whose vectors of unit length form F .
This way of writing the coordinates as the column of the column matrix MF

v

allows us to read the formula (1) as

v = F ·MF
v (2)

What happens if, instead of a vector v we have a pair of vectors S = (v1, v2)?
For each of these vectors formula (2) is valid and hence we have

S = F ·MF
S (3)

One sees, yet again, the efficacy of using the row by column product. But, the
best is yet to come. In fact, we can apply formula (3) to the pair G = (v1, v2)
and thus obtain

G = F ·MF
G (4)

What happens if the coordinates of v with respect to G are (b1, b2)? We can
write, as above, MG

v =
(
b1
b2

)
and v = G ·MG

v . If we transform the expression
v = G ·MG

v by substituting (4) into it, we obtain

v = F ·MF
G MG

v (5)

But, since we also have v = F ·MF
v (see (2)), the uniqueness of the coordinates

implies the following equality

MF
v = MF

G MG
v (6)

We come to the conclusion of this discussion of change of coordinates by
putting together the preceding formulas. Thus we have(

a1

a2

)
= MF

G

(
b1

b2

)
+

(
c1

c2

)
(7)

Inasmuch as the preceding discussion could seem a bit dry, let’s immediately
look at a specific case.

If P , v1, v2 have coordinates, (1, 2), (−1, 4), (2,−11) respectively, with
respect to Σ(O; u1, u2), then

MF
G =

(
−1 2

4 −11

)

and thus

MF
v =

(
−1 2

4 −11

)
MG

v +
(

1
2

)
If we let x, y be the coordinates of an arbitrary vector u with respect to
Σ(O; u1, u2) and x′, y′ the coordinates of u with respect to Σ(P ; v1, v2), then
we have the formula(

x
y

)
=

(
−1 2

4 −11

)(
x′

y′

)
+

(
1
2

)
(8)
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that is {
x = −x′ + 2y′ + 1
y = 4x′ − 11y′ + 2 (9)

This chapter concludes with the following brief, but intense, section. The
reader will have to concentrate in order to follow the mathematical reason-
ing which allows us to insert all that we have just seen about changes of
coordinates into a much broader context.

4.8 Vector Spaces and Bases

This last section of the first part of the book plays a basic role, inasmuch
as it not only completes the answers to some previous questions, but it also
gives the basis for many of the discussions in the second part of the book
(translator’s note: the puns are in the original and are intended!).

Let’s start off with the following question: how would the discussion of
the previous section change if, instead of the plane, we considered the same
problem in Rn? But, first of all, we should ask ourselves: what do we mean by
a coordinate system in Rn? Let’s remember that if a vector v (in the plane)
has coordinates (a1, a2) in the system of coordinates Σ(O; u1, u2), then one
may write v uniquely as v = a1u1 + a2u2. The essential ingredient is the
fact that there exist vectors u1, u2, in the plane, such that any vector can
be written in a unique way as a constant multiple of the first vector added
to a constant multiple of the second vector. It is worthwhile to give a special
name to a sum of the type a1u1 + a2u2 + · · ·+ arur, i.e. a sum of vectors
u1, u2, . . . , ur multiplied by constants a1, a2, . . . , ar. One calls such a sum a
linear combination of the vectors u1, u2, . . . , ur. If we consider the set of
n-tuples, that is the set Kn (with K a number field) we see that in it we can
do the operations which allow us to construct linear combinations. Sets in
which we can form linear combinations, like Kn, are called vector spaces.
In fact, mathematicians consider many other types of vector spaces, but as
far as we are concerned, the spaces of n-tuples are more than sufficient.

The equivalent notion to that of 1-, 2-, or 3-tuple of unit vectors which
defined a coordinate system on the line, in the plane and in space is thus,
in Kn, an n-tuple of vectors F = (f1, f2, . . . , fn), with the property that
every vector in Kn can be written in a unique way as a linear combination
of the vectors of F . Such an n-tuple of vectors is called a basis of Kn. Here
we are at the fundamental point where geometry can no longer help with its
pictures, as it did on the line and in the plane. It is precisely at this point
where algebra comes in to generalize the concept of a system of coordinates
using the concept of a basis.

But, do bases really exist? Have no fear, they exist in abundance. In fact,
there is one that is so obvious that it even has a name, we call it the canonical
basis. This is the basis E = (e1 , e2, . . . , en) where the vectors e1, . . . , en are
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defined by

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)

One notices how easy it is to find the coordinates of a vector with respect to
E. In fact, if u = (a1, a2, . . . , an) is a vector of Kn then one has u = a1e1 +
a2e2+· · ·+anen, that is the coordinates coincide with the components.

We’ve said that there are lots of bases. How can we find them and how
can we recognize them? Let’s suppose that we are given an r-tuple F =
(f1, f2, . . . , fr) of vectors in Kn. As we have already seen in the case of vectors
in the plane, we can write their coordinates with respect to the canonical basis
in a matrix of size n× r. It seems natural to use the same notation that we
introduced in the case of vectors in the plane and thus we have

F = E ·ME
F (a)

The reasoning now goes as follows: to say that F is a basis means that every
vector of Kn can be written in a unique way as a linear combination of the
vectors in F . In particular, one can do this for the vectors of E. Thus we can
find a matrix, which we naturally call MF

E , such that

E = F ·MF
E (b)

If S = (v1, v2, . . . , vs) is an s-tuple of vectors, we then have

S = E ·ME
S S = F ·MF

S (c)

Substituting (a) in the second equation of (c) and substituting (b) in the first
equation of (c) we get

S = E ·ME
F MF

S S = F ·MF
E ME

S (d)

Comparing (c) with (d) and taking into account the uniqueness of the repre-
sentation with respect to a basis, we get the equality of matrices

ME
S = ME

F MF
S MF

S = MF
E ME

S (e)

In particular, one has

In = ME
E = ME

F MF
E Ir = MF

F = MF
E ME

F (f)

We already mentioned in Section 2.5 that the two relations (f) have as a
consequence the fact that the matrices ME

F and MF
E are square and inverses

of each other, in other words

MF
E = (ME

F )−1 (g)

We have found the condition we have been searching for! Using rule (g) of
Section 4.6 we can deduce the following property.
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(1) An r-tuple of vectors forms a basis if and only if the
matrix associated to it with respect to the canonical basis
is invertible. In such an instance one has r = n.

(2) An n-tuple of vectors forms a basis if and only if the
determinant of the matrix associated to it with respect
to the canonical basis, is different from zero.

Once again, the notion of an invertible matrix makes a significant “curtain
call”. Moreover, from property (1) we deduce the following very important
fact.

All the bases of Kn consist of n vectors.

Naturally the converse is not true, in other words, it’s not true that every set
of n vectors in Kn is a basis. That would be like thinking that every square
matrix was invertible and we already know that this is not the case. As we
have always done, let’s look at some examples with the aim of familiarizing
ourselves with the mathematical facts we have just discussed.

Example 4.8.1. Let’s consider the following pair of vectors S = (v1, v2)
in R2, with v1 = (1, 1), v2 = (2, 2). We have

ME
S =

(
1 2
1 2

)

and we notice that ME
S is not invertible since its determinant is zero. Thus, S

is not a basis of R2. The geometrical explanation for this is found by observing
that if (1, 1), (2, 2) represent the coordinates of two vectors in a plane with
cartesian coordinates, then the two vectors are collinear and thus their linear
combinations give us only vectors on a line and not all the vectors in the
plane.

Example 4.8.2. Let’s consider the following triple of vectors S = (v1, v2, v3)
in R2, with v1 = (1, 2), v2 = (1, 0), v3 = (0, 2). One has

ME
S =

(
1 1 0
2 0 2

)

We’ve already observed that three vectors are too many to constitute a basis
for R2. And, in fact, we see that v1 − v2 − v3 = 0 and hence v1 − v2 − v3 =
0v1 − 0v2 − 0v3 are two different representations of the zero vector. That
contradicts the fundamental property which every basis possesses, i.e. that
every vector in Rn may be written in a unique way as a linear combination
of the vectors of S.
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Example 4.8.3. Consider the following pair of vectors S = (v1, v2) in R3,
with v1 = (1, 2, 3), v2 = (1, 2, 4). We have

ME
S =

⎛
⎝ 1 1

2 2
3 4

⎞
⎠

and we see that ME
S is not invertible, since it is not square. In this case

there are too few vectors in S and it would be too much to believe that
linear combinations of just two vectors could give us everything in R3. The
geometric picture to keep in mind is the following: linear combinations of two
non-parallel vectors in spaces will give us all the vectors of a plane and hence
cannot fill up all of space.

An amplification of the ideas considered here comes up in Part II in Sec-
tion 6.3, but we can immediately extract some benefits from the ideas just
mentioned. Let E be the canonical basis of Kn, and let F = (f1, . . . , fn) be
any basis of Kn and v = (a1, . . . , an) a vector of Kn. We already know that
v may be written in a unique way as a linear combination of the vectors in E
and so ME

v = (a1 · · ·an)tr. Moreover, we can write the vector v in a unique
fashion as a linear combination of the vectors in F , in other words, there are
uniquely determined numbers b1, . . . , bn ∈ K such that v = b1f1 + · · ·+ bnfn.
Put another way, there are uniquely determined numbers b1, . . . , bn ∈ K such
that MF

v = (b1 · · · bn)tr. Thus we have the following identity

v = E ·ME
v v = F ·MF

v

Now we are in a position to answer the following question: what relationship
is there between the coordinates of v with respect to E and the coordinates
of v with respect to F ? This question is a natural extension of the question
we posed in Section 4.7 about changes of coordinates. The answer is rather
simple. In fact,

F ·MF
v = E ·ME

v = F ·MF
E ME

v = F · (ME
F )−1ME

v

where the second inequality follows from formula (b) and the third from for-
mula (g) that we saw above. Once more we invoke the uniqueness of the
representation and deduce the following formula which computationally an-
swers our question

MF
v = (ME

F )−1ME
v (h)

We conclude this section, and thus both the chapter and Part I, with an
example that highlights the importance of formula (h).

Example 4.8.4. Consider v = (−2, 1, 6), v1 = (1, 1, 1), v2 = (0, 1, 0), v3 =
(1, 0, 2), vectors in R3, and let F = (v1, v2, v3). We have

ME
F =

⎛
⎝ 1 0 1

1 1 0
1 0 2

⎞
⎠
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Formula (h) says that MF
v = (ME

F )−1ME
v . We need only calculate the matrix

(ME
F )−1, which is

(ME
F )−1 =

⎛
⎝ 2 0 −1
−2 1 1
−1 0 1

⎞
⎠

Thus, we have

MF
v =

⎛
⎝ 2 0 −1
−2 1 1
−1 0 1

⎞
⎠

⎛
⎝−2

1
6

⎞
⎠ =

⎛
⎝−10

11
8

⎞
⎠

By the way, it’s easy to check that v = −10v1 + 11v2 + 8v3.

For the moment let’s be content with the considerations and the examples
we have already seen. As I mentioned above, we’ll come back to them and
develop them in more depth in Section 6.3. Some readers might object to
this way of doing things, indeed it is not linear. But, as has already been
observed, the world in which we live is not linear and neither are. . . books of
linear algebra.
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Exercises

Exercise 1. Consider the vectors v1 = (1, 0, 0), v2 = (−1,−1, 2),
v3 = (0, 0, 1) of R3 and the triple F = (v1, v2, v3). Let

A =

⎛
⎝ 1 1 −2

2 −2 1
1 0 0

⎞
⎠

(a) Prove that F is a basis of R3.
(b) Knowing that A = MG

F , determine G.

Exercise 2. Let’s suppose that we are given a monometric orthogonal
coordinate system in the plane and consider the vectors u = (2, 2), v =
(−1,−2).

(a) Calculate the cosine of the angle formed by u and normal(v).
(b) Find three vectors which have the same modulus as v.
(c) Describe the set of all vectors which are perpendicular to u.

Exercise 3. Consider the vectors v1 = (1, 2, 0), v2 = (1,−1, 1), v3 =
(0, 1, 2), u = (1, 1, 1) of R3 and the triple F = (v1, v2, v3).

(a) Verify that F is a basis of R3.
(b) Calculate the volume of the parallelepiped defined by v1, v2, v3.
(c) Verify the equality u = E ·ME

F MF
u .

Exercise 4. Consider the following matrices

A =

⎛
⎝ 1 1 0

3 −1 −2
0 0 1

2

⎞
⎠

Does there exist a basis F of R3 such that A = MF
E ?

Exercise 5. Suppose that we have a monometric orthogonal coordinate
system in space and the vectors u1 = (1, 2, 0), u2 = (2, 4, 1), u3 = (4, 9, 1)
of R3.

(a) Calculate the volume of the parallelepiped defined by the three vectors.
(b) Find all the vectors which are perpendicular to both u1 and u2.
(c) Find a vector v with the following two properties:

v = u2 u1 · u2 < u1 · v

Exercise 6. Using the properties of the determinant, prove that if A is
an invertible matrix the following formula is true: det(A−1) = (det(A))−1.
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Exercises

Before you begin to consider the problems given in the exercises, permit me to
offer some advice. The reader should remember that, as well as the techniques
learned in each section, it is always of fundamental importance to use common
sense when approaching a problem. I’m not kidding! In fact, it often happens
that university students concentrate so hard on trying to use the formulas
they have learned in the course, that they don’t realize that a small dose of
common sense is often what is needed to solve the problems. Even if that
common sense is not enough, it will (in any case) help.

Exercise 1. What power of 10 is a solution to 0.0001x = 1000?

Exercise 2. Consider the equation ax−b = 0, where a = 0.0001, b = 5.

(a) Find the solution α.
(b) By how much do you have to alter a in order to have a solution that

differs from α by at least 50000?
(c) If p is a positive number that is smaller than a, can you produce a

bigger error by substituting for a the number a − p or the number
a + p?

Exercise 3. Construct an example of an equation of type ax = b, in
which an error in the coefficients hardly makes any difference in the error
of the solution.

Exercise 4. Despite the fact that the inverse of 2 doesn’t exist in the
integers, why is it possible to solve (with integers) the equation 2x−6 = 0?

Exercise 5. Are the two equations ax−b = 0 and (a−1)x−(b−x) = 0
equivalent?

Exercise 6. Consider the following equations (with a parameter) of type
ax − b = 0.

(a) Find the real solutions of (t2 − 2)x− 1 = 0 in terms of t in Q.
(b) Find the real solutions of (t2 − 2)x− 1 = 0 in terms of t in R.
(c) Find the real solutions of (t2 − 1)x− t + 1 = 0 in terms of t in N.
(d) Find the real solutions of (t2 − 1)x− t + 1 = 0 in terms of t in R.
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Exercise 7. Let n be a positive whole number.

(a) Let u, v ∈ Rn be two vectors with rational components. Is it true that
their scalar product is a rational number?

(b) Is it true that if a non-zero vector in Rn has rational components then
the unit vector in the same direction has rational components?

Exercise 8. Consider the two matrices

A =
(
1 3 1

2

)tr
B =

(
1 −1 4

)
Verify that det(A ·B) = 0 and find a geometric explanation for that.

Exercise 9. Suppose that we are given a monometric orthogonal coor-
dinate system in space and the five points A1 = (3, 0, 0), A2 = (1, 3, 3),
A3 = (0, 0, 2), A4 = (0, 7, 0), A5 = (1, 1, 1).

(a) What are the two closest points of these five?
(b) If the distance formula between two points in space were |b1 − a1| +

|b2 − a2| + |b3 − a3|, instead of
√

(b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2 ,
would you have the same response to the previous question?

@ Exercise 10. Let A be a 5×5 matrix with random entries. (To make such
a matrix you should use a computer algebra system, for example CoCoA.)
Using CoCoAyou can form the matrix M as follows:

L:=[[Randomized(X) | X In 1..5] | X In 1..5]; M:=Mat(L);

(a) Calculate the determinant of A and observe that it is not equal to zero.
(b) Repeat the experiment, i.e. construct another random matrix, and ob-

serve that the same thing happens, i.e. its determinant is not equal to
zero.

(c) Give an explanation of the fact that a square matrix with random
entries is invertible.

Observation: If the reader finds a matrix (using the procedure above)
whose determinant is equal to zero, the possible reasons for this are two:
the reader has made a mistake interfacing with his calculator or the reader
is gifted with paranormal powers.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
This finishes Part I. If the reader is, by chance, thinking of stopping here, I
would like to try and dissuade him or her. What follows is certainly a little
more difficult to read but I really believe it is worth the effort. The strength
of linear algebra, which up to now has been contained, will begin to reveal
itself more completely.

I parte, II arriva
(piccola anticipazione della Parte II)
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Quadratic Forms

this is �−n ex �−mple of �− qu �−dr �−tic f �rm

In this chapter we will study yet another aspect of the extraordinary capacity
of matrices to adapt themselves to very diverse situations.

In the same way that systems of linear equations can be used as mathe-
matical models for a multitude of problems, polynomial systems i.e. a system
that we obtain by setting equal to zero a finite number of multivariate polyno-
mials, are even more important and permit us to model a still larger number
of problems.

Just to give a simple (self-referential) example of this, it turns out that
the design of the fonts in which this book is written is done using curves
which can be described analytically by polynomial equations of degree less
than or equal to three. We are not going to go into that here, but I wanted
to mention it just to give an indication of the importance of describing, with
equations, entities that will then appear on a screen or on paper as graphic
objects.

As another example, if we wanted to describe a circle with center at the
point P (1, 2) and with radius 3 using a monometric system of coordinates in
the plane, we could use the equation

(x− 1)2 + (y − 2)2 − 9 = 0

It’s clear that drawing that circle on a monitor would require the coloring
of a large number of pixels. But, how do you explain to a printer or to a
collaborator by means of e-mail the information about how to draw that
circle? A simple way would be to transmit a list of all the pixels that you
had to color.

For example, if the page had length 6000 pixels and width 4000 pixels
and we only wanted to transmit the picture in black and white, it would
be enough to transmit a matrix A of type 6000 × 4000 whose white pixels
could be coded by putting a zero in the appropriate place in the matrix and
by putting a 1 in the matrix where we wanted a black pixel. This method

Robbiano L.: Linear Algebra for everyone
c© Springer-Verlag Italia 2011
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would be ok no matter what the figure was. Naturally, the information about
the black circumference on a white background could be made much more
compact using more subtle methods. How?

One way is to transmit the three numbers 1, 2, 3. The person who receives
these numbers knows that the first two numbers represent the center of the
circle and the third number represents the radius! Instead of the millions of
entries in the matrix A, it was enough to have three numbers! But, things
don’t finish here. Suppose we wanted to magnify our illustration? Using the
mathematical description it is sufficient just to change one parameter, namely
the radius of the circle.

This example, notwithstanding the fact that it is strongly simplified,
should give an idea of how mathematics can be an essential support for tech-
nology. Unfortunately, the treatment of the mathematical objects described
by systems of polynomial equations is much more complicated that those de-
scribed by linear systems. But, there is one very important case where linear
algebra with its toolkit of ideas, in particular with the powerful idea of a
matrix, returns to center stage. We’ll see this in the study of equations of the
second degree.

5.1 Equations of the Second Degree

I guess that all the readers know what an equation of the second degree is,
or at least they believe that they know what it is. Let’s see if that’s true by,
for instance, trying to represent a generic equation of the second degree in
three variables.

The answer is f(x, y, z) = 0 with

f(x, y, z) = a1x
2 + a2y

2 + a3z
2 + a4xy + a5xz + a6yz + a7x + a8y + a9z + a10

Let’s look carefully at the polynomial f(x, y, z) and begin by saying that its
leading part is the homogeneous part of the second degree, i.e.

a1x
2 + a2y

2 + a3z
2 + a4xy + a5xz + a6yz

In what sense is it leading? Doing some reasoning similar to what we did in
Section 3.4 we can think of the polynomial as a function and then the linear
part

a7x + a8y + a9z + a10

is overcome by the quadratic part when x, y and z get big.
Another observation is that, if we add a new variable w, we can homogenize

the polynomial and write

a1x
2 + a2y

2 + a3z
2 + a4xy + a5xz + a6yz + a7xw + a8yw + a9zw + a10w

2
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To get back the original polynomial all we have to do is make the substitution
w = 1. We won’t dwell now on the mathematical subtleties that arise in
these considerations. Suffice it to say that in order to analyze equations of
the second degree, the mathematical objects which are most important to
study are the homogeneous polynomials of the second degree, also known as
quadratic forms.

What, then, is a quadratic form? Mathematicians would define them cor-
rectly saying that a quadratic form is a sum of monomials of the second
degree. In the case of two variables, x and y, a quadratic form is thus an
expression of the type

ax2 + bxy + cy2

And why are these so important? And, moreover, what do they have to do
with linear algebra? Let’s start by observing that we can also speak of linear
forms. A linear form, inasmuch as it is a sum of monomials of degree 1, is
nothing more than a polynomial of degree one with constant term equal to
zero, thus it is an expression of the type

αx + βy

which we have already encountered and studied in the first part of the book.
Now let’s make a small observation. If αx + βy is a linear form, then its

square is (αx+βy)2 = α2x2 +2αβxy +β2y2 and thus is a quadratic form. If,
at this moment, you might think that all quadratic forms are nothing more
than squares of linear forms, it would be best to not have that thought again!
Anyone who has studied a small bit of geometry knows that this is not true
because there are conics which are not double lines, in fact the overwhelming
number of conics are not double lines. For those of you who have not studied
any geometry, the preceding remark will not mean much. In that case you
will have to depend on some ideas from high school where you probably saw
that the quadratic form x2 + xy + y2 was not the square of a linear form.

Nevertheless, the question still remains open: how are quadratic forms
related to linear algebra? The relationship comes from the following equation
which mathematicians noticed

ax2 + bxy + cy2 = (x y )
(

a b
2

b
2 c

) (
x
y

)

which is, at first glance, unexpected and esthetically even ugly. If we call 2b
(instead of b) the coefficient of xy the relation can be rewritten as

ax2 + 2bxy + cy2 = (x y )
(

a b
b c

) (
x
y

)
(∗)

which is at least a bit prettier to look at. Some readers might wonder if
we have saved some of the beauty of the matrix notation at the expense of
limiting the validity of the formula. Perhaps the writer of the second formula
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thinks that every number is a multiple of two? But we know, for example,
that in Z the number 3 is not a multiple of 2. The fact is that every number
can be written as the double of its half, assuming, of course, that the half
exists! We will guarantee that one half exists if we consider our coefficients
as being in a number field whose characteristic is different from 2 (which
guarantees the existence of 1

2
).

The reader shouldn’t worry over much if the preceding phrases are not well
understood. It will be enough to understand that, for example, Q and R are
fine for us and we may, without worry, put aside this mathematical subtlety.

With this observation in mind and in order to avoid difficulties (and for
other reasons which we will discuss later) we shall, in this chapter, always take
our coefficients from the field R of real numbers.

We finally come to the expression (∗) above. Given that x and y are the
names given to the unknowns, all the information of the quadratic form is
contained in the matrix A =

(
a b
b c

)
, which we immediately notice is symmetric

(see Section 2.2). Here, once again, we are coming face to face with matrices
and we can see the analogy with what was said about the matrix associated
to a linear system. Just as in the earlier situation, you’ll recall, all the infor-
mation is recorded in one particular matrix. The preceding observation made
for quadratic forms in two variables can be generalized. If we have n variables
x1, x2, . . . , xn and write the generic quadratic form

Q = a11x
2
1 + 2a12x1x2 + · · ·+ annx2

n

then we again have the equality

Q = (x1 x2 · · · xn )

⎛
⎜⎝

a11 a12 · · ·a1n

a12 a22 · · ·a2n

· · · · · · · · ·
a1n a2n · · ·ann

⎞
⎟⎠

⎛
⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎠ (1)

The symmetric matrix obtained in this way is called the matrix of the
quadratic form. Let’s look at an example.

Example 5.1.1. The quadratic form

Q = 2x2 − 1
3
xy + 2yz − z2

may be written

Q = (x y z)

⎛
⎝ 2 −1

6 0
−1

6 0 1
0 1 −1

⎞
⎠

⎛
⎝x

y
z

⎞
⎠

as can be verified directly by carrying out the various products.

Now, let’s prepare ourselves for another change of scene! If (x1, x2, . . . , xn)
is thought of as a general vector then we know that its components are also
the coordinates with respect to the canonical basis.
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This observation can be viewed as thinking of the expression (1) as making
reference to the canonical basis E = (e1, e2, . . . , en). That, in turn, suggests
that we call the symmetric matrix above ME

Q . Why ME
Q ? Some would say

that this notation is rather cumbersome, which in fact it is, but (as often
happens) one pays a high price for a clear expression. In this case we are
paying (with the awkwardness of the notation) for the fact that it expresses
the ideas clearly. What I mean is that ME

Q self describes the fact that it is
the matrix of the quadratic form Q with reference to the canonical basis E.

How does such a description help us? Writing v = (x1, x2, . . . , xn), the
quadratic form can then be written in the following way

Q = (ME
v )tr ME

Q ME
v (2)

And exactly where is the advantage of interpreting the quadratic form in this
way which, at first glance, seems more abstruse? But, suppose we consider
another basis F = (v1, v2, . . . , vn) of Rn. We have seen in Section 4.8 that
the fact of being a basis can be translated into saying that the matrix ME

F is
invertible. We’ve also seen that ME

v = ME
F MF

v . So, if we substitute these
expressions into the equality (2), we obtain

Q = (ME
F MF

v )tr ME
Q ME

F MF
v = (MF

v )tr (ME
F )tr ME

Q ME
F MF

v (3)

And now we have a nice surprise. The preceding formula expresses the
fact that if the matrix of the quadratic form Q with respect to E is ME

Q ,
then the matrix of the same quadratic form with respect to the basis F is
(ME

F )tr ME
Q ME

F . We have thus proved the following formula

MF
Q = (ME

F )tr ME
Q ME

F (4)

At this stage it’s not very clear how one could possibly use such a formula
and, before going ahead with our study, let’s at least see if we can under-
stand the underlying idea. For the moment, let’s be content with knowing
that having a formula like (4) at our disposal, we could hope to find an op-
portune basis F so that the matrix (ME

F )tr ME
Q ME

F is easier or nicer than
the matrix ME

Q . Studying the matrices associated to a linear system, we have
already learned that easier or nicer means lots of zeroes and, in fact, if the
matrix (ME

F )tr ME
Q ME

F has lots of zeroes, the quadratic form also has lots
of zero coefficients and is thus easier to describe.

This discussion has, necessarily, been a bit vague and so we should really
look at an example.

Example 5.1.2. Making the mixed term disappear
Let’s consider the quadratic form Q = 3x2 − 4xy + 3y2 in the variables
x, y. Let v1 = (

√
2

2 ,
√

2
2 ), v2 = (−

√
2

2 ,
√

2
2 ) and let F = (v1, v2). One has the

equality ME
F =

(√
2

2 −
√

2
2

√
2

2

√
2

2

)
and since det(ME

F ) = 1 we deduce that the matrix
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is invertible and hence F is a basis of R2. What happens if we write the
quadratic form Q with respect to the basis F ? Formula (4) gives the answer
and hence one has

MF
Q =

( √
2

2

√
2

2

−
√

2
2

√
2

2

)(
3 −2
−2 3

) ( √
2

2 −
√

2
2√

2
2

√
2

2

)
=

(
1 0
0 5

)

This means that, if the calculations have been done well and the new coor-
dinates of the vector v are called x′, y′ the quadratic form can be written
x′2 + 5y′2. Let’s check that.

We have (
x
y

)
= ME

v = ME
F MF

v =

( √
2

2
−
√

2
2√

2
2

√
2

2

) (
x′

y′

)

Consequently, we get

x =
√

2
2

(x′ − y′) y =
√

2
2

(x′ + y′)

Now let’s substitute this in the expression Q = 3x2 − 4xy + 3y2 to obtain

Q = 3(
√

2
2

(x′−y′))2−4(
√

2
2

(x′−y′))(
√

2
2

(x′+y′))+3(
√

2
2

(x′+y′))2 = x′2+5y′2

Notice that the coefficient of x′y′ is zero and hence the mixed term has dis-
appeared. The wise use of matrices has allowed us to find a new system of
coordinates so that with respect to that new system the quadratic form is
simpler. More precisely, in the first expression we had the mixed term xy and
now the mixed term x′y′ doesn’t appear.

This example, interesting though it seems, is not yet satisfying. In fact, all
the readers will have noticed that the choice of the new basis seemed to come
out of nowhere. What oracle has told us to choose the vectors v1 = (

√
2

2
,
√

2
2

),
v2 = (−

√
2

2 ,
√

2
2 )?

In order to understand how we chose that basis the reader has to be
patient, as we have quite a long road to travel before we see how that was
done. Certainly one doesn’t choose these bases by trial and error, we need
to have a method. Nevertheless, before concluding this section it is useful to
make one more observation which is contained in the following example.

Example 5.1.3. The Identity Matrix
What happens if ME

Q = In? We can give the answer quickly and easily. In
fact, if v = (x1, x2, . . . , xn) is the generic vector we have the following equality

Q = (x1 x2 · · · xn ) In

⎛
⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎠ = x2

1 + x2
2 + · · ·+ x2

n = |v|2
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Thus, we have easily discovered that if the matrix of the quadratic form is
the identity, then the form itself is nothing other than the one we used to
define the length of a vector and hence is related to the notion of distance.
One more time we have seen that geometry and algebra are intimately tied
together and each illuminates the other.

5.2 Elementary Operations on Symmetric Matrices

The preceding section brought to light a fundamental connection between
quadratic forms and symmetric matrices. It’s time now to go into that link
more deeply.

So, let A be a real symmetric matrix of type n. We have seen that A may
be thought of as the matrix of a quadratic form in n variables x1, . . . , xn, with
respect to the canonical basis E = (e1, . . . , en) of Rn. We have also noted
that a change of basis modifies A, transforming it into the matrix P trAP ,
where P = ME

F . Assuming our objective is that of simplifying A, we have to
figure out how to use the operation P trAP with P invertible, in a way that
will achieve our objective. Keep in mind what we did with Gaussian reduc-
tion. Recall, that procedure allowed us to manipulate a matrix A into upper
triangular form using elementary row operations. By putting together such
operations, i.e. by multiplying by the corresponding elementary matrices, we
were able to obtain PA = U where P is invertible (because it was a product
of elementary matrices) and U is upper triangular.

Can we do the same thing in this new situation? Certainly not, because
doing such a thing would destroy the symmetry of the matrix A. We have to
figure out a new strategy which will bring us not to PA but to P trAP .

The key observation is that if we do an elementary operation on the rows
and the same elementary operation on the columns, we don’t destroy the sym-
metry. In fact, if an elementary operation on the rows has a certain effect,
the symmetric effect can be obtained by doing the corresponding elementary
operation on the columns. How can we be sure that this is correct? Mathe-
maticians usually try to give a rigorous proof, but first we have to understand
what it is we want to prove.

So, observe that if M and N are two matrices for which we can form the
product MN , then

(MN)tr = N tr M tr (1)

Also observe that for every matrix A we have the following equality

(Atr)tr = A (2)

The following fact is also true

A is symmetric if and only if A = Atr (3)
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Finally notice that if A is invertible then we have the equality

(Atr)−1 = (A−1)tr (4)

The proofs of these last statements are not going to be given here, but we
suggest that the reader try to give the proofs because all are actually rather
easy.

Now, putting all these various facts together we get: if A is a symmetric
matrix and B is a square matrix of the same type as A then the matrix
Btr A B is symmetric. In fact it is enough to use rules (1) and (2) to obtain
the equality

(Btr A B)tr = Btr Atr (Btr)tr = Btr A B

from which the conclusion follows by applying rule (3).
Now that we know that performing operations of the type Btr A B doesn’t

destroy the symmetry of A, let’s return to the strategy of doing elementary
operations on the rows and columns. We’ll start trying to understand what
happens by working out some examples.

Example 5.2.1. Let A =
(
1 2
2 3

)
. We can use a11 = 1 as a pivot and take

our first step toward Gaussian reduction by subtracting from the second row
twice the first row. We know that this means multiplying, on the left, by the
elementary matrix E1 =

(
1 0
−2 1

)
. One obtains B = E1A =

(
1 2
0 −1

)
, which is no

longer symmetric. So, let’s consider (E1)tr =
(
1 −2
0 1

)
and multiply B on the

right by it, obtaining B(E1)tr =
(
1 0
0 −1

)
. We’ve ended up with a matrix that

is symmetric and has lots of zeroes. In conclusion, putting P = (E1)tr one
has

P =
(

1 −2
0 1

)
P tr A P =

(
1 0
0 −1

)

If we think of A as the matrix of the quadratic form x2 + 4xy + 3y2 then,
with respect to the new basis F = (v1, v2), where v1 = e1, v2 = (−2, 1), the
same form can now be written x′2 − y′2.

Having understood this last example, we are at a good point. Now we
know that we can proceed with the Method of Gauss as long as we can find
a non-zero pivot on the principal diagonal. Obviously, this is not enough.
It could happen that in the right place on the principal diagonal there is a
zero! What would we do then? In that case, the Gauss method tells us to
exchange two appropriate rows. Can we do the same thing in our situation?
From what we said earlier, any exchange of rows has to be accompanied by
a corresponding exchange of columns. Let’s see how that would work.

Example 5.2.2. Let A =
(
0 1
1 2

)
. Inasmuch as a11 = 0 let’s try to exchange

the row and also the column. In order to do that put E1 =
(
0 1
1 0

)
and so we

get

(E1)trAE1 =
(

2 1
1 0

)
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This matrix has a non-zero pivot in the right place and thus we can proceed
as in the previous example. One obtains(

1 0
−1

2
1

) (
2 1
1 0

) (
1 −1

2
0 1

)
=

(
2 1
0 −1

2

) (
1 −1

2
0 1

)
=

(
2 0
0 −1

2

)

Thus, putting P tr =
(

1 0
− 1

2 1

)(
0 1
1 0

)
=

(
0 1
1 − 1

2

)
, one obtains

P tr A P =
(

2 0
0 −1

2

)

Does that finish everything? No, there is still one more situation in which the
previous procedure would not work. Let’s take a look at it.

Example 5.2.3. Let A =
(
0 a
a 0

)
with a �= 0. One can easily see that making

an exchange of both rows and columns, nothing changes. In fact(
0 1
1 0

)(
0 a
a 0

) (
0 1
1 0

)
=

(
0 a
a 0

)

However, there is a way out of this situation. If we consider the matrix
P =

(
1 −1
1 1

)
, we obtain

P tr A P =
(

1 1
−1 1

)(
0 a
a 0

) (
1 −1
1 1

)
=

(
2a 0
0 −2a

)

We have now gathered together all the various instruments we need, and
so let’s get to work. Let’s try to deal with an example which is a bit more
difficult.

Example 5.2.4. Let’s consider the following real symmetric matrix.

A =

⎛
⎜⎜⎜⎝

2 − 8 − 3 − 3
−8 29 79

6
71
6

−3 79
6

437
108

601
108

−3 71
6

601
108

485
108

⎞
⎟⎟⎟⎠

We use a11 = 2 as a pivot to get a zero in the first row, first column. We have

(E1)tr=

⎛
⎜⎜⎝

1 0 0 0
4 1 0 0
3
2 0 1 0
3
2 0 0 1

⎞
⎟⎟⎠ (E1)tr A E1=

⎛
⎜⎜⎜⎝

2 0 0 0
0 −3 7

6
− 1

6

0 7
6
− 49

108
115
108

0 −1
6

115
108 − 1

108

⎞
⎟⎟⎟⎠

Now let’s use the entry −3 in the (2, 2) position as a pivot. We get

(E2)tr=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 7

18 1 0
0 − 1

18
0 1

⎞
⎟⎟⎠ (E2)tr (E1)tr A E1E2=

⎛
⎜⎜⎝

2 0 0 0
0 −3 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠
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This last matrix we can deal with using the method we saw in the preceding
example. Thus, one has

(E3)tr=

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 1
0 0 −1 1

⎞
⎟⎠ (E3)tr(E2)tr(E1)trA E1E2E3 =

⎛
⎜⎜⎝

2 0 0 0
0 −3 0 0
0 0 2 0
0 0 0 −2

⎞
⎟⎟⎠

Now let’s put

P = E1E2E3 =

⎛
⎜⎜⎝

1 4 13
3 −16

9

0 1 1
3

−4
9

0 0 1 −1
0 0 1 1

⎞
⎟⎟⎠

and we finally have

P tr A P =

⎛
⎜⎜⎝

2 0 0 0
0 −3 0 0
0 0 2 0
0 0 0 −2

⎞
⎟⎟⎠

The conclusion to all of the reasoning above is the following. Consider the ele-
mentary operations on the rows and the corresponding elementary operations
on the columns of a real symmetric matrix. To these add a type of elemen-
tary operation based on Example 5.2.3. Using these elementary operations,
the matrix of any quadratic form may be transformed into a diagonal matrix.
In the language of quadratic forms we can make the following affirmation.

Every real quadratic form may be represented by means of a
diagonal matrix.

If the matrix of the quadratic form is A and the elementary matrices which
perform the operations on the columns are E1, E2, . . . , Er then the matrix

B = (Er)tr · · · (E2)tr (E1)tr A E1E2 · · ·Er

is diagonal. Putting P = E1E2 · · ·Er one has

B = P tr A P

with P invertible and B diagonal.
At this point it is a good idea to know the standard terminology for

what we have done above. One says that two real symmetric matrices A
and B (of the same type) are congruent if there is an invertible matrix P
with B = P tr A P . In this case we say the two matrices are related by congru-
ence. Mathematicians love to observe that this relation is, in fact, an equiva-
lence relation. The preceding affirmation, that every real quadratic form may
be represented by a diagonal matrix, is expressed purely in the language of
matrices as in the following proposition.

Every real symmetric matrix is congruent to a real diagonal
matrix.



5.2 Elementary Operations on Symmetric Matrices 121

With a tiny bit of extra effort we can arrive at a very important observation.
We have just seen that if Q is a real quadratic form in n variables then there
is a basis F of Rn such that MF

Q is diagonal. With the right exchange of
both rows and columns we can easily suppose that on this diagonal the first
entries are positive numbers, then negative numbers and then zeroes. Is this
not completely clear to some readers? Let’s immediately look at an example
to try to make it clear.

Example 5.2.5. Let’s consider the following symmetric matrix

A =

⎛
⎝ 0 −2 1
−2 −4 0

1 0 1

⎞
⎠ ∈Mat3(R)

and the corresponding real quadratic form Q = −4x1 x2 +2x1 x3 −4x2
2 +x2

3 .
Let’s now make a simultaneous interchange of the first two rows and the first
two columns using the following elementary operations

A1 = Etr
1 AE1 =

⎛
⎝ −4 −2 0
−2 0 1

0 1 1

⎞
⎠ where E1 =

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠

Now let’s do another elementary operation

A2 = Etr
2 A1E2 =

⎛
⎝ −4 0 0

0 1 1
0 1 1

⎞
⎠ where E2 =

⎛
⎝ 1 −1

2
0

0 1 0
0 0 1

⎞
⎠

and yet another elementary operation

A3 = Etr
3 A2E3 =

⎛
⎝ −4 0 0

0 1 0
0 0 0

⎞
⎠ where E3 =

⎛
⎝ 1 0 0

0 1 −1
0 0 1

⎞
⎠

We have finally obtained a diagonal matrix A3, but we would prefer to have,
on the main diagonal, first the positive entries, then the negative one and
lastly the zero entries. In our case it would be enough to simultaneously
interchange both the first two rows and first two columns. Let’s do that

A4 = Etr
4 A3E4 =

⎛
⎝ 1 0 0

0 −4 0
0 0 0

⎞
⎠ where E4 =

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠

and we get

(E1E2E3E4)tr A (E1E2E3E4) =

⎛
⎝ 1 0 0

0 −4 0
0 0 0

⎞
⎠
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But, the mathematicians are not yet completely satisfied. In fact, they notice
that every positive real number a is a square, more precisely it is the square
of that number which is called its square root and is usually written

√
a. So, if

a > 0 one has a = (
√

a)2 and −a = −(
√

a)2. For example, we have the equal-
ities

√
4 = 2, 4 = 22, −4 = −22 and analogously the equalities 3 = (

√
3)2,

−3 = −(
√

3)2 .
How can we use this observation? Let’s look back, for a moment, to the

example above and observe that⎛
⎝1 0 0

0 −1
2 0

0 0 1

⎞
⎠

⎛
⎝ 1 0 0

0 −4 0
0 0 0

⎞
⎠

⎛
⎝1 0 0

0 −1
2 0

0 0 1

⎞
⎠ =

⎛
⎝ 1 0 0

0 −1 0
0 0 0

⎞
⎠

If we put

E5 =

⎛
⎝1 0 0

0 −1
2 0

0 0 1

⎞
⎠ B =

⎛
⎝ 1 0 0

0 −1 0
0 0 0

⎞
⎠

P = E1E2E3E4E5 =

⎛
⎝ 1 0 −1
−1

2 −1
2

1
2

0 0 1

⎞
⎠

we have, as a consequence, the equality

P tr AP = B

Notice that not only is B diagonal, but it has the extra feature that the en-
tries on the diagonal are numbers in the set {1, 0,−1} which are, moreover,
arranged in order, in the sense that we first find a sequence of 1’s, then a
sequence of −1’s and finally a sequence of 0’s. A matrix with these charac-
teristics will be called a matrix in canonical form. If we put P = ME

F ,
we get F = (v1, v2, v3) where v1 = (1,−1

2 , 0), v2 = (0,−1
2 , 0), v3 = (−1, 1

2 , 1).
Given that det(P ) = −1

2
, the matrix P is invertible and hence F is a basis

for R3. If we set (x1, x2, x3)tr = ME
v , (y1, y2, y3)tr = MF

v we have

(x1, x2, x3)tr = ME
v = ME

F MF
v = P (y1, y2, y3)tr

and hence⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝ 1 0 −1
−1

2 −1
2

1
2

0 0 1

⎞
⎠

⎛
⎝ y1

y2

y3

⎞
⎠ =

⎛
⎝y1 − y3

−1
2y1 − 1

2y2 + 1
2y3

y3

⎞
⎠

If we make that substitution into the expression Q = −4x1 x2 + 2x1 x3 −
4x2

2 + x2
3 we obtain the equality

4(y1 − y3)(−1
2y1 − 1

2y2 + 1
2y3) + 2(y1 − y3)y3−4(−1

2y1 − 1
2 y2 + 1

2y3)2 + y2
3 =

y2
1 − y2

2
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As expected from the earlier calculations, one has MF
Q = B. As we did

earlier, one says that Q = y2
1 − y2

2 is the canonical form of the quadratic
form Q. It shouldn’t surprise you that all that we did on this specific example
is actually quite general and we have the following fact.

Every real symmetric matrix is congruent to a matrix in canon-
ical form.

Equivalently, one has the following fact.
Every real quadratic form may be put into canonical form.

The sense of all of this is that there is a basis F of Rn such that if we express
the quadratic form Q in coordinates with respect to this basis then Q can be
written in the following way

y2
1 + · · ·+ y2

r − y2
r+1 − · · · − y2

r+s with r + s ≤ n

5.3 Quadratic Forms, Functions, Positivity

Now that we have seen how to transform the matrix representing a quadratic
form into a diagonal matrix (indeed, into a matrix in canonical form) this
allows us to study some important properties of quadratic forms. In particular
we are interested in studying the behavior of a real quadratic form thought
of as a function from Rn to R. This is something that we haven’t considered
up to now, so this is a good time to pause and reflect a bit on this new way
of thinking about quadratic forms. Let’s begin by looking at an example.
Consider the polynomial f = x2 − yz3 + x− 1. If, in place of x, y, z, we put
some real numbers then, using the indicated operations, we get a real number.
For example, if x = 2, y = 1

2 , z = −5, and v = (2, 1
2 ,−5), we get f(v) = 135

2 .
This shows that the polynomial f can act like a function with input from R3

and output (or values) in R. Mathematicians describe this very succinctly by
saying that one can interpret f as a function from R3 to R and they write
f : R3−→R.

It will not have escaped the notice of the attentive reader that the rea-
soning above can be applied to any polynomial, in particular to a quadratic
form which, as we have said, is nothing but a particular kind of polynomial
of degree 2. Thus, if Q = a11x

2
1 + 2a12x1x2 + · · ·annx2

n is a quadratic form
in n variables, then it can be interpreted as a function Q : Rn−→R. Let’s
explore this aspect of Q. A first observation is that if v is the zero vector
then Q(v) = 0. But, if v is not zero can we say anything about Q(v)? For
example, can we tell if Q(v) ≥ 0 or Q(v) ≤ 0? Clearly if we take a specific
vector v it’s enough to simply calculate Q(v). But, if we want to know this
more generally? For example, suppose we want to know if Q(v) > 0 for every
v �= 0, how could we do that? Certainly we cannot try out an infinite number
of specific v’s, so we need some other information.
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Before going on let’s take a small digression of an exquisitely technical na-
ture. A mathematician likes to make clear that to speak of the positivity of
a quadratic form, the form has to be defined over an ordered field. For
example we cannot speak of this concept if the field is C, the field of complex
numbers or if the field is Z2, another field already seen and used in Sec-
tion 2.5. But, we had already decided at the beginning of this section to work
only over the field R and hence we have no problem, because every non-zero
real number is either positive or negative. As usual, to put things into better
focus let’s look at some examples.

Example 5.3.1. Consider the variables x1, x2, x3, and let v = (x1, x2, x3)
be the generic vector of R3. The quadratic form

Q(v) = x2
1 + x2

2 + 3x2
3 (1)

has the property that Q(v) > 0 for every vector v �= 0. In fact, the square of
any non-zero real number is positive and thus, when we substitute (in Q) for
the three coordinates of the vector, the three summands assume non-negative
values. On the other hand, at least one of the three summands is positive,
given that the vector is different from the zero vector and hence has at least
one coordinate that is not zero.

The quadratic form
Q(v) = 3x2

1 + 8x2
3 (2)

has the property that Q(v) ≥ 0 for every vector v �= 0. It is different from the
preceding example in that it assumes the value zero even for some vectors
that are not equal to the zero vector, for example at the vector v = (0, 1, 0).

The quadratic form
Q(v) = 3x2

1 − 8x2
3 (3)

assumes both positive and negative values. For example, we have: Q(1, 0, 0) =
3, Q(0, 0, 1) = −8.

The reader will probably have noticed that the examples above were easy to
analyze because the quadratic forms considered all had associated symmetric
matrices which were diagonal. Having an associated symmetric matrix that is
diagonal means that the coefficients of the mixed terms, i.e. of the terms xixj

with i �= j, were all zero. Or, as we say in a more colloquial way, the mixed
terms weren’t there. But, consider the quadratic form

Q(v) = 2x2
1 + 2x1x2 + 2x2

2 + 2x2x3 + 3x2
3 (4)

What can we say about it?
We have to be a bit shrewd here. If, apart from the canonical basis E, we

consider another basis F , we know that every vector v can be represented
using either E or F and from those two possibilities we get the formulas

Q(v) = (ME
v )tr ME

Q ME
v Q(v) = (MF

v )tr MF
Q MF

v
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Moreover, we also have at our disposal formula (4) of Section 5.1, namely

MF
Q = (ME

F )tr ME
Q ME

F

Now, when we represent the quadratic form Q using ME
Q or MF

Q , we get com-
pletely different looking representations of the same quadratic form. On the
other hand, it should be clear that an intrinsic property of the quadratic form
should not depend on its representation. The problem of positivity concerns
a property that is intrinsic to the form, since it depends on how we view the
quadratic form as a function. That doesn’t depend on how the form is repre-
sented and, as a consequence, to study positivity we can use any matrix MF

Q .
We’ve seen above, with the examples, that the absence of mixed terms makes
solving the problem of positivity easier and so a winning strategy is to look
for a basis F such that MF

Q is diagonal, something which we know how to
do.

Let’s set a bit of terminology. A quadratic form which assumes positive
values for every non-zero vector will be called positive definite. If, instead,
it assumes only non-negative values on non-zero vectors we will call the form
positive semidefinite. Finally, if the form assumes both positive and nega-
tive values we will say that the form is not definite. One can naturally transfer
this terminology to real symmetric matrices given that such a matrix can al-
ways be thought of as ME

Q and so defines a quadratic form. For example,
we say that the matrix A =

(
0 0
0 1

)
is positive semidefinite. In fact we can

interpret A as ME
Q , where Q = x2

2 is a quadratic form in two variables which
assumes only non-negative values for every vector of R2, but assumes the
value 0 at vectors which are not the zero vector, like (1, 0).

We still have not answered the question above, i.e. what can we say about
the form (4)? We can notice that

2x2
1 + 2x1x2 + 2x2

2 + 2x2x3 + 3x2
3 = x2

1 + (x1 + x2)2 + (x2 + x3)2 + 2x2
3

from which it follows that the form is, at least, positive semidefinite since it
is a sum of squares. On the other hand Q(v) = 0 implies that x1 = x1 +x2 =
x1+x3 = x3 = 0, from which we deduce that x1 = x2 = x3 = 0 and hence that
v is the zero vector. In this example we succeeded in answering the question
by using a small calculational artifice to notice that Q was positive definite.
Naturally, in general, we can’t hope to always be able to find such artifices.
Fortunately, we have available a method which will allow us to always give
an answer to this kind of question.

Recall that we have seen, in the preceding section, that if Q is a quadratic
form then, with respect to the right basis, Q can be represented with a
diagonal matrix. Thus there is a basis F such that, if we call y1, y2, . . . , yn

the coordinates of the generic vector with respect to F , we can write the
form Q as

Q(v) = b11y
2
1 + b22y

2
2 + · · ·+ bnny2

n
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Once we are at this point it is clear that the positivity of the form simply
depends on the signs of the coefficients bij. More precisely,

If the coefficients bij are all positive then the form is positive
definite; if all the coefficients are non-negative and some are
zero then the form is positive semidefinite; if the coefficients
have different signs then the form is not definite.

Is that the end of the questions? Is it really necessary to represent the form
with a diagonal matrix to study the positivity. Let’s try a little experiment.

Example 5.3.2. Let A =
(
a b
b c

)
, and let Q = ax2

1 + 2bx1x2 + cx2
2 be the

corresponding quadratic form and let’s further suppose that a �= 0. Using an
elementary change we obtain

B = Etr AE =
(

a 0
0 c− b2

a

)
where E =

(
1 − b

a
0 1

)

We notice the following facts: the entry in position (1, 1) has not been
changed; the determinant has not been changed either, it is equal to ac−b2; if
we set δ = c− b2

a
= det(A)

a
, then the form, with respect to a new basis, can be

written ay2
1 +δy2

2 = ay2
1 + det(A)

a y2
2 . From what was said earlier, the quadratic

form is positive definite if a > 0 and δ > 0 i.e. if a > 0 and det(A) > 0.

Thus, for matrices of type 2 with a11 �= 0, the positivity can be decided
by observing the entry in position (1, 1) and by calculating the determinant.
What about more generally? In the meantime the reader could amuse himself
or herself by verifying that if a11 = 0, the matrix cannot be positive definite.
If that sort of amusement doesn’t appeal to you then you can go on reading
what follows.

A minor of type (or order) r of a matrix is the determinant of a submatrix
of type r. The ith principal minor of a matrix is the determinant of the
submatrix formed by the entries in position (r, s) where 1 ≤ r ≤ i,
1 ≤ s ≤ i.

Using the reasoning of the previous example, we can prove the so-called
Criterion of Sylvester which affirms the following fact.

A quadratic form represented by a symmetric matrix A is posi-
tive definite if and only if all of its principal minors are positive.

For example, the quadratic form associated to the matrix A =
(
1 2
2 7

)
is positive

definite because a11 = 1 > 0 and det(A) = 3 > 0, while that associated to

the matrix A =
(
0 1
1 7

)
is not positive definite because a11 = 0.

I would like to close this section with this mathematical gem. From
Sylvester’s criterion we can deduce that the positivity of the principal minors
of the matrix of a quadratic form does not depend on the basis chosen to
represent the form. This is not a trivial fact.
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5.4 Cholesky Decomposition

In the preceding section we concentrated on studying the positivity of a
quadratic form. But, if instead the problem were that of constructing positive
definite quadratic forms (or positive semidefinite quadratic form), how would
we deal with that? One solution is already available and we have seen it in
the preceding section; write a quadratic form using a diagonal matrix having
all elements on the principal diagonal positive (or all non-negative).

But, there is another way to get positive definite (or positive semidefi-
nite) quadratic forms which is also interesting and which creates symmetric
matrices which may not be diagonal. Let’s see how. Suppose we have any
matrix, A, not necessarily even square. Consider its transpose matrix, Atr.
Now form the product AtrA. To begin with, if we call B the matrix AtrA, we
have

Btr = (AtrA)tr = Atr(Atr)tr = AtrA = B

and hence B is symmetric of type c and so we can think of it as the matrix
of a quadratic form Q in c variables.

Now comes the interesting discovery. If v = ME
v is a generic vector of Rc,

we have

Q(v) = (ME
v )tr BME

v = (ME
v )tr AtrAME

v = (AME
v )tr (AME

v )

If we put

AME
v =

⎛
⎜⎜⎝

y1

y2
...
yr

⎞
⎟⎟⎠ (∗)

we get

Q(v) = ( y1 y2 . . . yr )

⎛
⎜⎜⎝

y1

y2
...
yr

⎞
⎟⎟⎠ = y2

1 + y2
2 + · · ·+ y2

r

At this point we can already affirm that the form is positive semidefinite. Can
we also decide if it is positive definite? In practice we have to see if it is true
that Q(v) = 0 implies that v = 0. But the equality Q(v) = 0 is equivalent to
the equality y2

1 + y2
2 + · · ·+ y2

r = 0, which (in turn) is equivalent to having
yi = 0 for every i = 1, . . . , r. Thus, we have to decide if having yi = 0 for
every i = 1, . . . , r implies v = 0. From formula (∗) we see that having yi = 0
for each i = 1, . . . , r is precisely the same as having AME

v = 0 and that does
not, in general, imply that ME

v = 0. It does imply that, however, if A is
invertible.

That’s not the only situation that will imply that v = 0 (as we will see in
Section 6.3) but, nevertheless, it is a very important special case and allows
us to affirm the following important fact.
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If A is an invertible matrix then AtrA is a positive definite matrix.

Example 5.4.1. If A =
(
1 1 0
2 1 3

)
, we have

AtrA =

⎛
⎝ 5 3 6

3 2 3
6 3 9

⎞
⎠

From the discussion above, AtrA is positive semidefinite. We can see that it
is not positive definite in two different ways.
(1) Let’s put AtrA into diagonal form. We obtain the matrix

D =

⎛
⎝ 5 0 0

0 1
5 0

0 0 0

⎞
⎠

which is not positive definite since there is a zero entry on the principal
diagonal. On the other hand, D is the matrix of the quadratic form Q
defined by ME

Q = AtrA. Thus the form Q is not positive definite and
hence AtrA is not positive definite.

(2) Let’s look for a non-zero solution to the system of linear equations Ax =
0. For example (3,−3,−1) is such a solution. Given v = (3,−3,−1), we
therefore have AME

v = 0 and so Q(v) = (AME
v )tr (AME

v ) = 0.

A curious, and mathematically relevant, thing is that there exists a kind of
inverse to what we saw above. In other words, if A is the matrix of a positive
definite form then there is an upper triangular matrix with positive
diagonal U such that A = U trU . Such a decomposition of the matrix A is
called a Cholesky decomposition of A. As is now our usual procedure,
let’s look at an example.

Example 5.4.2. Consider the symmetric matrix

A =

⎛
⎝ 1 3 1

3 15 1
1 1 2

⎞
⎠

Inasmuch as a11 = 1, the principal minor of type 2 is 6, and the determinant
is 2, we deduce from Sylvester’s criterion that A is positive definite. Let’s
try to find the Cholesky decomposition of A. Recall that we want to find
an upper triangular matrix U with positive diagonal such that we have the
equality A = U tr U .

Set

U =

⎛
⎝ a b c

0 d e
0 0 f

⎞
⎠ and then U tr U =

⎛
⎝ a2 ab ac

ab b2 + d2 bc + de
ac bc + de c2 + e2 + f2

⎞
⎠
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Setting that equal to A and taking account of the fact that the diagonal
entries of U are to be positive, we obtain the following equalities: a = 1,
b = 3, c = 1, d =

√
6, e = − 2√

6
, f = 1√

3
.

In fact, if we set

U =

⎛
⎜⎝

1 3 1
0
√

6 − 2√
6

0 0 1√
3

⎞
⎟⎠

we can verify the equality

A =

⎛
⎝ 1 3 1

3 15 1
1 1 2

⎞
⎠ =

⎛
⎝ 1 0 0

3
√

6 0
1 − 2√

6
1√
3

⎞
⎠

⎛
⎜⎝

1 3 1
0
√

6 − 2√
6

0 0 1√
3

⎞
⎟⎠ = U tr U

And what about the case when the matrix is not positive definite? If the
reader has paid attention to the discussion above, the following reasoning will
not be difficult to follow. If we have the equality A = U tr U , with U upper
triangular having positive principal diagonal, then A is positive semidefinite.
Moreover, U is invertible and we have recently seen that if U is invertible
then U tr U is, necessarily, positive definite. The conclusion is that if A is not
positive definite it cannot have a Cholesky decomposition. Let’s look at an
example.

Example 5.4.3. Let A =
(
1 1
1 0

)
. We put U =

(
a b
0 c

)
and set A = U tr U . Doing

the calculations we obtain a2 = 1, ab = 1, b2 + c2 = 0, from which we deduce
that a = 1, b = 1 and also 1 + c2 = 0, which has no real solution. Some more
informed reader would correctly observe that the system is solvable over the
complex numbers. But, one shouldn’t get overly excited by that fact inasmuch
as the field of complex numbers is not an ordered field and so the notion of
positivity is not relevant, as we observed at the beginning of Section 5.3.

To finish off this section, let’s look at a pair of mathematical observations.
The first observations is that even if the entries of the positive definite ma-
trix are rational, the Cholesky decomposition may introduce square roots of
rational numbers and hence, as in the example just above, the decomposition
can be done if one is willing to allow real entries that may not be rational.
With that proviso we have no problem with rational matrices.

The second observation is the following. Perhaps you have wondered about
how to find, in general, the Cholesky decomposition of a positive definite
matrix A. In other words, how does one go about proving that such a decom-
position exists in general and how does one find it. As has been said many
times, this is the job of a mathematician. If the reader does not have this
mathematical curiosity he or she can skip the final part of this section. But,
at this stage perhaps every reader has a little curiosity?

So, we now switch to mathematical mode and prove that every positive
definite matrix A has a Cholesky decomposition.



130 5 Quadratic Forms

If A is a positive definite matrix then we know that all of its princi-
pal minors are positive. Inasmuch as elementary transformations do
not change principal minors (a not so obvious fact), after every ele-
mentary operation on the rows and columns we find ourselves with
a non-zero pivot. Hence we can proceed with elementary transfor-
mations (with no exchanges of rows or columns) and arrive at the
diagonal form. Then we have the formula D = P tr A P , with D diag-
onal and all the diagonal entries positive. The matrix P is a product
of upper triangular matrices whose diagonal entices are all equal to
1, hence P is an upper triangular matrix whose diagonal entries are
all 1. The inverse of P is also, then, upper triangular with diagonal
entries all equal to 1. We can write A = (P−1)tr D P−1. Now observe
that the entries on the diagonal of D are all positive and hence are
squares. If we indicate by

√
D the diagonal matrix whose diagonal

entries are the positive square roots of the corresponding entries of
D, we obtain A = (P−1)tr

√
D

tr√
DP−1. Set U =

√
DP−1 and this

gives rise to the conclusion that A = U tr U and we see that U has
the properties we required.

As you can see, proving is not an easy job and is justly left to mathematicians,
but it is important that the reader understand that it is crucial that someone
does this job, otherwise we would just continue to accumulate examples but
would never be sure that we were able to affirm something general.
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Exercises

Exercise 1. Which of the following expressions are quadratic forms?

(a) x2 − 1
(b) xyz
(c) x3 − y3 + xy − (x− y)3 − 3xy(x − y) − y2

Exercise 2. For which values of a is the quadratic form x2− axy− a2y2

the square of a linear form?

Exercise 3. Given the following symmetric matrix

A =

(−4 2
2 5

)

(a) Transform A into a diagonal matrix B using only elementary opera-
tions on the rows and columns of A.

(b) Describe the new coordinate system for which the quadratic form Q,
associated to the matrix A, now has associated matrix B, and verify
your choice.

(c) Deduce that Q is not positive definite by finding two vectors u and v
in R2 such that Q(u) > 0 and Q(v) < 0.

(d) Do there exist non-zero vectors u ∈ R2 such that Q(u) = 0?

Exercise 4. (Hard)
Let Q be the quadratic form, defined over Z2, having associated matrix

ME
Q =

(
0 1
1 0

)

Show that there is no basis F of (Z2)
2 for which MF

Q is diagonal.

Exercise 5. Let Q be the quadratic form defined by

ME
Q =

⎛
⎝ 0 −1 4
−1 0 −2

4 −2 7

⎞
⎠

and let f1 = (1, 1, 1), f2 = (1, 0, 2), f3 = (0, 2,−1) and F = (u1, u2, u3).

(a) Verify that F is a basis of R3.
(b) Calculate MF

Q .

Exercise 6. Consider the following symmetric matrix

A =

⎛
⎝ 8 −4 4
−4 6 18

4 18 102

⎞
⎠
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(a) Decide if A is positive definite, positive semidefinite or not definite.
(b) Using elementary row and column operations, transform A into a di-

agonal matrix B.
(c) Determine all the vectors u ∈ R3 such that Q(u) = 0.

Exercise 7. Given the following matrix

A =

⎛
⎝ 1 2 3

2 4 6
4 8 12

⎞
⎠

(a) Let Q be the quadratic form associate to the matrix B = AtrA. Put
Q in canonical form and find the change of basis matrix.

(b) Is it true that Q is the square of a linear form?

Exercise 8. Consider the set S of real symmetric matrices of type 3
(or, as the mathematicians would say; consider the subset S ⊂ Mat3(R) of
symmetric matrices).

(a) How many matrices in S are in canonical form? What are they?
(b) How many matrices in S are in canonical form and are also positive

semidefinite? What are they?

Exercise 9. Let A ∈ Matn(R) be a real symmetric matrix.

(a) Is it true that if A is positive definite then aii > 0 for i = 1, . . . , n?
(b) Is the converse also true?

Exercise 10. Given the matrix

A =

⎛
⎝ 1 2

2 4
4 0

⎞
⎠

(a) Find the Cholesky decomposition of AtrA.
(b) Is it possible to find the Cholesky decomposition of AAtr?

@ Exercise 11. Put the following symmetric matrix into canonical form

A =

⎛
⎜⎜⎜⎜⎝

2 3 4 2 2
3 1 7 1 6
4 7 10 4 6
2 1 4 1 3
2 6 6 3 3

⎞
⎟⎟⎟⎟⎠
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Orthogonality and Orthonormality

dove sta esattamente l’ortocentro?
quale è la dimensione di un orto normale?

(From “Le Domande dell’Orticoltore”
by an anonymous author)

We are used to thinking of orthogonal coordinate systems as the most in-
teresting and most useful. This habit comes from studying the graphs of
functions in the plane or in space. Is the same thing also true in Rn? In
this chapter we will try to justify the reason for this perception and also to
respond to the question above.

Our starting point is exactly where we stopped in our study of positive
definite quadratic forms in the previous chapter. Among those there is one
that is rather special, namely the one for which ME

Q = I. Why is it so
special? Recall that, in Example 5.1.3, we saw that we have the relation
Q(v) = (ME

v )tr I ME
v = v · v = |v|2 for this form. Thus, this quadratic

form is connected to the concept of the length of a vector and from that
to the concept of distance. But, there is much more. In fact one can extend
this connection between quadratic forms and scalar products quite a bit. We
won’t go into the details of this rather sophisticated theory; it is enough for
the reader to know that quadratic forms are intrinsically tied, through the
concept of the polar form, to the so-called bilinear forms (among which we
find the scalar product).

In this chapter we will speak at length about orthogonality and of orthog-
onal projections. Since we will work in the spaces Rn we will need some new
algebraic instruments. We will have to stop along the way to consider the
concepts of linear dependence, rank of a matrix, vector subspaces and their
dimensions. We will discuss orthogonal and orthonormal matrices and we will
see how to construct orthonormal matrices starting from matrices of maximal
rank using the so-called Gram-Schmidt orthonormalization procedure and the
QR decomposition. There’s lots of work to do!

Robbiano L.: Linear Algebra for everyone
c© Springer-Verlag Italia 2011
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6.1 Orthonormal Tuples and Orthonormal Matrices

We have already seen in Section 4.6, that the scalar product is the algebraic
instrument which allows us to speak of orthogonality even in Rn. Let’s sup-
pose that we have an s-tuple of vectors from Rn, S = (w1, w2, . . . , ws). If we
were looking for a clever way to store all the scalar products of the vectors
of S, how could we do that? This is not hard; we can consider the matrix ME

S

and recall that the columns of ME
S contain the coordinates of the vectors of

S and that the rows of (ME
S )tr coincide with the columns of ME

S . Thus, if
wi = (a1, a2, . . . , an), wj = (b1, b2, . . . , bn), then the entry in position (i, j) of
the matrix (ME

S )tr ME
S is precisely a1b1 + a2b2 + · · ·+ anbn. This number is

nothing more than the scalar product wi ·wj. We can thus say that the entry
in the (i, j) position of the matrix (ME

S )tr ME
S is wi · wj and we can also

say that the matrix (ME
S )tr ME

S is the matrix of the scalar products of the
vectors in S. One of the first consequences of this observation is that the
vectors of the s-tuple S are pairwise orthogonal if and only if (ME

S )tr ME
S is

a diagonal matrix, and they are pairwise orthogonal and of unit length if and
only if (ME

S )tr ME
S = Is. In the first case we say that S is an orthogonal

s-tuple of vectors and that the matrix ME
S is an orthogonal matrix. In the

second case we say that S is an orthonormal s-tuple of vectors and that
the matrix ME

S is an orthonormal matrix. Notice that in the second case
the vectors, having unit length, are automatically not zero. In particular if S
is a basis we can speak of an orthogonal basis in the first case and of an
orthonormal basis in the second case. Let’s look at an example.

Example 6.1.1. Let w1 = (1, 2, 1), w2 = (1,−1, 1) and let S = (w1, w2).
Then S is an orthogonal but not orthonormal pair of vectors. Equivalently,
the matrix

ME
S =

⎛
⎝ 1 1

2 −1
1 1

⎞
⎠

is an orthogonal matrix but not an orthonormal matrix. We see that

(ME
S )tr (ME

S ) =
(

1 2 1
1 −1 1

) ⎛
⎝ 1 1

2 −1
1 1

⎞
⎠ =

(
6 0
0 3

)

is a diagonal matrix but is not the identity matrix.

We have arrived at a central point. What characterizes a matrix of
type ME

S when S is an orthonormal basis? As we have just seen, if A = ME
S ,

where S is an orthonormal basis, then Atr A = I. But, we already know
that A is invertible and thus we get the relation

Atr = A−1
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In other words, its inverse coincides with its transpose! The very attentive
reader will have noticed that once we have the relation Atr A = I, then in
order to conclude that Atr = A−1 it is enough to know that A is a square
matrix (see Section 2.5). The interesting consequence of this observation is
the following

Every orthonormal n-tuple of vectors of Rn is a basis for Rn.

Example 6.1.2. Let’s consider the following matrix

A =

⎛
⎜⎝

1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2

⎞
⎟⎠

This is an orthonormal matrix, in fact we see easily that Atr A = I, or,
equivalently that the three vectors whose coordinates form the columns of
A, are pairwise orthogonal and of unit length. As a consequence, the triple
of vectors whose coordinates constitute the columns of A is an orthonormal
basis for R3.

We conclude this section with an observation. In the case of square or-
thonormal matrices the very expensive operation of calculating the inverse is
reduced to the very cheap operation of calculating the transpose. This reveals
a big reason why orthonormal matrices are considered so important.

6.2 Rotations

l’altra luna faccia la rivoluzione
e mostri l’una e l’altra faccia

(From “Rotazioni e Rivoluzioni”
by an anonymous author)

Let’s concentrate for the moment on the orthogonal matrices of type 2 and try
to classify them. First of all, what does it mean to classify these objects? In
the mathematical context it means much the same as it would mean in other
contexts, namely to subdivide the objects on the basis of some predetermined
characteristics. Naturally, the phrase is still rather vague and we will start
this classification with the matrices of type 2 and see if we can get some idea
of what we might mean. Notice that such a matrix may be written in the
following way

O =
(

a b
c d

)
where the condition of orthogonality gives

ab + cd = 0 (1)
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while that of normality gives

a2 + c2 = 1 b2 + d2 = 1 (2)

Observe that two real numbers a and c such that a2 + c2 = 1 are necessarily
the cosine and sine of the same angle ϑ. So, we can assume that a = cos(ϑ)
and c = sin(ϑ). The same thing is true for b and d. Thus we can assume that
b = cos(ϕ) and d = sin(ϕ). On the other hand, the orthogonality of the two
vectors, expressed by equation (1), implies the angles ϑ and ϕ differ by π

2 .
Thus ϕ = ϑ + π

2 or ϕ = ϑ− π
2 and so cos(ϕ) = − sin(ϑ) or cos(ϕ) = sin(ϑ)

and sin(ϕ) = cos(ϑ) or sin(ϕ) = − cos(ϑ). Putting this all together one has

O =
(

cos(ϑ) − sin(ϑ)
sin(ϑ) cos(ϑ)

)
or O =

(
cos(ϑ) sin(ϑ)
sin(ϑ) − cos(ϑ)

)
(3)

One notices that the first matrix has determinant 1 while the second matrix
has determinant −1. We thus have in front of us a classification. In fact we
have a description of the family of orthonormal matrices of type 2 divided
into two subfamilies. The tag which identifies each member of the subfamily
is the value of ϑ.

Can we give a geometric significance to each of the two families? The an-
swer to this question is rather simple but requires some preliminary consid-
erations. Do you remember the significance of the determinant of a matrix of
type 2? That problem was studied in detail in Section 4.4 where we concluded
by saying that the determinant of a matrix is, in absolute value, the area of the
parallelogram defined by the two vectors whose coordinates, with respect to an
orthogonal cartesian system of vectors of unit length, are the columns of the
matrix. In our case, since we are dealing with two vectors of unit length (see
formula (2)) which are orthogonal to each other (see formula (1)), the paral-
lelogram in question is a square having side of length 1 and hence has area 1.

Now let’s reflect on that small additional piece of information in the phrase,
in absolute value. What does that mean here? Recall that if we exchange two
columns of a square matrix its determinant changes sign (see rule (a) in
Section 4.6). So, we cannot always assume that the determinant is an area.
However, the determinant contains more information. It’s absolute value is
the area, and the sign depends on the direction in which we think of the
angle formed by the two vectors corresponding to the columns. If we move
from the first column to the second in a counterclockwise sense, the sign
is positive, if the motion is in a clockwise sense, the sign is negative. Why?
Describing the matrices using formulas (3), as we did before, let’s see if we can
clear up this rule of signs. Since the vector corresponding to the first column
is (cos(ϑ), sin(ϑ)), the vector (− sin(ϑ), cos(ϑ)) coincides with (cos(ϑ + π

2 ),
sin(ϑ + π

2
)), while the vector (sin(ϑ),− cos(ϑ)) coincides with (cos(ϑ − π

2
),

sin(ϑ−π
2
)). Inasmuch as we conventionally sum angles in the counterclockwise

sense, the conclusion is clear.

After all of these considerations it would be good if the reader has under-
stood why this section is called rotations.
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6.3 Subspaces, Linear Independence, Rank, Dimension

If it’s true that orthonormal bases are so important, as we have already
noted in the preceding sections, then it is certainly worth the effort to look
for them and possibly to construct them. Before coming to grips with this
new challenge it will be good to equip ourselves with some more mathematical
tools.

Let’s recall that F = (f1, . . . , fn) is a basis for Rn if and only if ME
F

is invertible. Remember also that being a basis essentially points out two
important features of F , namely that every vector in Rn can be written as a
linear combination of this n-tuple of vectors and that this way of writing the
vector as a linear combination of the n-tuple of vectors is unique.

Suppose now that we have an s-tuple of vectors G = (g1, . . . , gs) with
s < n. We already know that G cannot be a basis for Rn because G doesn’t
have enough vectors in it. But, couldn’t it be a basis for a smaller space
or, more modestly, generate a smaller space? Now here someone had a great
idea, namely considering the space V (G) consisting of all the vectors which
are linear combinations of g1, . . . , gs. Mathematicians call this the vector
subspace of Rn generated by G, while Rn is called the vector space of
the n-tuples of real numbers. If it is also true that every vector in V (G)
can be written uniquely as a linear combination of the vectors of G then we
say that G is an s-tuple of linearly independent vectors or that G is a basis
for V (G). Moreover, if G is an orthogonal (or orthonormal) s-tuple we say
that G is an orthogonal (orthonormal) basis of V (G). Let’s try to get
some familiarity with these ideas and the new terminology by looking at a
geometric example.

Example 6.3.1. Let g1 = (1, 1, 1), g2 = (−1, 2, 0), g3 = (1, 4, 2) be three
vectors in R3 and let G = (g1, g2, g3). Consider the matrix ME

G and the
system of linear homogeneous equations associated to them⎧⎨

⎩
x1 − x2 + x3 = 0
x1 + 2x2 + 4x3 = 0
x1 + 2x3 = 0

When we solve this system we will find an infinite number of solutions,
among them (2, 1,−1). In fact, the given solution corresponds to the rela-
tion 2g1 + g2 − g3 = 0. Since the zero vector can also be written in this way
0g1 + 0g2 + 0g3 = 0 one sees that the zero vector can be written in more than
one way as a linear combination of the vectors of G. This indicates that the
columns of ME

G are linearly dependent or, equivalently, that the three vectors
of G are linearly dependent i.e. not linearly independent.

Now let’s consider the space V (G) which consists of all the linear combi-
nations of the vectors in G. The relation 2g1 + g2 − g3 = 0 can also be read
as g3 = 2g1 +g2. Thus, the vector g3 is a linear combination of g1 and g2 and
thus if we call G′ the pair (g1, g2) we have that V (G) = V (G′). If we now
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solve the homogeneous system of linear equations associated to ME
G′ , we see

that it has only the trivial solution and hence the vectors of G′ are linearly
independent and hence G′ is a basis for the vector subspace V (G) = V (G′).
Let’s now suppose that we have a system of Cartesian coordinates in space
and let’s interpret g1, g2 and g3 as vectors (or points) in the way described
in Section 4.2. Geometrically speaking, we can say that the two non-parallel
vectors g1 and g2, generate a plane π passing through the origin of the coor-
dinate system and that the third vector g3 is in π. Moreover, the two vectors
g1 and g2 with the origin O constitute a system of coordinates Σ(O; g1, g2)
on π.

By studying examples like the one above, mathematicians became aware
that what happens in that example is not an isolated phenomenon. More
precisely, they showed that in order to be sure that G is an r-tuple of linearly
independent vectors it is enough to be able to write the zero vector in a
unique way, i.e. only as 0 g1 + 0 g2 + · · ·+ 0 gs. Therefore if we consider the
matrix ME

G and the homogeneous system of linear equations associated to it,
i.e. ME

G x = 0, to say that G is formed of linearly independent vectors is the
same as saying that this system of equations has only the trivial solution.
This fact can also be expressed by saying that the columns of the matrix ME

G

are linearly independent.
Given any s-tuple of vectors whatsoever, we can ask what is the maximum

number of vectors in the s-tuple which are linearly independent. In an anal-
ogous way, we can ask what is the maximum number of linearly independent
columns in an arbitrary matrix.

Mathematicians may, at times, be quite boring but they are undoubtedly
often acute observers and know how to furnish an interesting and complete
answer to this question. They have proved the following facts.

(1) The maximum number of linearly independent columns of a
matrix is the same as the maximum number of its linearly
independent rows.

(2) That number coincides with the maximum type of a square
submatrix with non-zero determinant.

(3) That number doesn’t change if we multiply the matrix by any
invertible matrix.

Recalling what was said in Section 5.3, namely that a minor of type (or order)
r is the determinant of a submatrix of type r, rule (2) can be rewritten as
follows.

(2’) That number coincides with the maximum type (or order) of
a non-zero minor.
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From these remarks, we understand the importance of that number. This
merits it being given a name: we call that number the rank of A and indicate
it with rk(A) (in some countries the word characteristic is used instead of
rank). Let’s look at a simple example.

Example 6.3.2. Let’s consider the matrix

A =

⎛
⎝ 1 2 3
−1 1 0
−1 5 4

⎞
⎠

Since the third column is the sum of the first two, the three column vec-
tors are not linearly independent. Another way to see this is to observe
that det(A) = 0. Since the submatrix formed using the first two rows and the
first two columns has determinant non-zero, we can conclude that rk(A) = 2
and hence that the maximum number of columns (and rows) of A that are
linearly independent is precisely 2.

It’s clear from the properties above that rk(A) can never exceed either the
number of rows of A or the number of columns of A. Put more precisely we
have the following fact:

If A is an m×n matrix then its rank cannot exceed the minimum
of m and n.

We call a matrix which has rank equal to the minimum of the number of
rows and the number of columns a matrix of maximal rank. Note that the
matrix of the example just above is not of maximal rank while the matrix(
1 0 2
0 0 1

)
is.

In Section 4.8 we saw that every basis of Rn is formed using n vectors. It
is very appropriate then, to call n the dimension of Rn since in the cases
n = 1, n = 2 and n = 3 it corresponds to our intuitive idea of dimension.
How can we extend this concept to vector subspaces? In Example 6.3.1 we
saw that the space V (G) is a plane and hence it would be logical for it to
have dimension 2. It is no accident that the number of vectors in a basis for
it (namely G′) is 2. I say “no accident” because we can show that not only
does Rn have all its bases with the same number of elements but any vector
subspace V of Rn has all its bases with the same number of vectors in them.
It is quite natural to call that number the dimension of V and to denote it
dim(V ).

Since the rank of any matrix A ∈ Matr,c(R) coincides with the maximum
number of linearly independent columns of A, we can deduce the following
facts.

(1) The dimension of the subspace V of Rn generated by the
columns of A coincides with rk(A).

(2) A basis of V can be obtained by extracting the maximum num-
ber of linearly independent columns from A.

Let’s do another example so that we have these concepts clear.
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Example 6.3.3. Consider the following vectors in R5.
g1 = (1, 0, 1, 0, 1), g2 = (−1,−2,−3, 1, 1), g3 = (5, 8, 13,−4,−3),
g4 = (8, 14, 6, 1,−8), g5 = (−17,−42,−11,−3, 31).

Let G = (g1, g2, g3, g4, g5) and consider V (G), a vector subspace of R5. Ob-
serve that ME

G is a square matrix of type 5. In fact one has

ME
G =

⎛
⎜⎜⎜⎜⎝

1 −1 5 8 −17
0 −2 8 14 −42
1 −3 13 6 −11
0 1 −4 1 −3
1 1 −3 −8 31

⎞
⎟⎟⎟⎟⎠

If we do some elementary row operations, following the strategy of Gaussian
reduction, we obtain the matrix

A =

⎛
⎜⎜⎜⎜⎝

1 −1 5 8 −17
0 −2 8 14 −42
0 0 0 −16 48
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

As A has two zero rows, its rank cannot exceed three. On the other hand
we notice that the submatrix formed by the first three rows and by the
first, second and fourth column is upper triangular with determinant dif-
ferent from zero. Using rules (1), (2) and (3) about the rank of a matrix,
we can thus conclude that rk(A) = 3, that rk(A) = rk(ME

G ) and hence that
dim(V (G)) = 3. Finally, observe that (g1, g2, g4) is a basis of V (G), while (for
example) (g1, g2, g3) is not a basis for V (G), since these last three vectors are
linearly dependent.

We conclude this section with a discussion about something which mathe-
maticians (rightly) think is very important. More precisely we will see a class
of vector subspaces to which we will return in Section 8.2 when we consider
eigenspaces in detail. The key point of this discussion is the fact that the
space of solutions of a system of homogeneous linear equations is a vector
subspace. Let’s see why that is true.

Given a number field K (for example R) consider a homogeneous system
of linear equations in n unknowns and with coefficients in K. Let V be the
set of solutions to that system in Kn. Then the following statements are true.
(1) The set V is a vector subspace of Kn.
(2) After we do Gaussian reduction and then attribute to the free

variables the values (1, 0, . . . , 0), (0, 1, . . . , 0), . . ., (0, 0, . . . , 1), the
solutions we so obtain form a basis for V .
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Let’s clarify these concepts with an example.

Example 6.3.4. Consider the following system of homogeneous linear equa-
tions S, with real coefficients,{

x1 − x2 + 2x3 − x4 = 0
x1 − x2 + 3x3 − 4x4 = 0

With two elementary operations we obtain the following equivalent system{
x1 − x2 + 5x4 = 0

x3 − 3x4 = 0

Considering x2 and x4 as the free variables, the general solution, in R4, of S
is thus (a−5b, a, 3b, b) where a and b take on arbitrary values in R. Putting
a = 1, b = 0, we get the vector u1 = (1, 1, 0, 0). Putting a = 0, b = 1, we get
the vector u2 = (−5, 0, 3, 1).

Using properties (1) and (2) we can conclude that the set V , of real so-
lutions to the homogeneous system S, is a vector subspace of R4 and that a
basis for it is (u1, u2).

6.4 Orthonormal Bases and the Gram-Schmidt
Procedure

When we used systems of coordinates in the plane, we always preferred to
use those defined by a pair of non-zero orthogonal vectors of the same length,
i.e. we used coordinates that we called orthogonal and monometric. But, if
we already have a system of coordinates, can we construct another with these
desirable characteristics?

Let’s look at the following figure.
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If we had begun with (g1, g2) and we had also a unit of measure we could
consider the unit vector in the direction of g1, call it g′1, and decompose g2

as the sum of two vectors, one parallel to g1 and one orthogonal to g1. If we
let g′2 be the unit vector in the direction orthogonal to g1 we see that (g′1, g

′
2)

are orthonormal vectors and hence (together with an origin) define a system
of orthogonal coordinates which is monometric. Can we hope to generalize
this intuitive discussion to Rn? One can always hope; but, fortunately, in this
case we can transform that hope into reality. Let’s see how.
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We begin with an interesting consideration. Let’s suppose that we have at
hand an s-tuple G = (g1, . . . , gs) of vectors in Rn which are linearly indepen-
dent and are also orthonormal i.e. an orthonormal basis for V (G). Let v be
a vector in V (G). We know that we can write v = GMG

v = a1g1 + · · ·asgs.
However, if we consider the scalar products v · gi and use the orthonormality
of G we obtain the following relations v · gi = (a1g1 + · · ·asgs) · gi = ai. It
follows that

v = (v · g1)g1 + · · · (v · gs)gs i.e. MG
v = (v · g1 · · · v · gs)tr (∗)

Let’s look at an example.

Example 6.4.1. Consider the pair of vectors G = (g1, g2) in the space R4,
where g1 = (1, 1, 0,−1), g2 = (−1, 0, 0,−1). Since g1 · g2 = 0 these are
orthogonal vectors. If we consider their normalizations we obtain a pair
of orthonormal vectors and hence an orthonormal basis for V (G). Letting
g′1 = vers(g1) = 1√

3
(1, 1, 0,−1) = ( 1√

3
, 1√

3
, 0,− 1√

3
) and g′2 = vers(g2) =

1√
2
(−1, 0, 0,−1) = (− 1√

2
, 0, 0,− 1√

2
), we see that G′ = (g′1, g

′
2) is an orthonor-

mal basis for V (G) = V (G′).
Now, consider the vector v = g1 + 2g2 = (−1, 1, 0,−3) in the space V (G).

Since v · g′1 =
√

3 and v · g′2 = 2
√

2, we have (v · g′1)g′1 + (v · g′2)g′2 =√
3( 1√

3
, 1√

3
, 0,− 1√

3
) + 2

√
2(− 1√

2
, 0, 0,− 1√

2
) = (1, 1, 0,−1) + (−2, 0, 0,−2) =

(−1, 1, 0,−3) = v, as we expected from formula (∗).

The attentive reader will have noticed that formula (∗) didn’t need the
a priori knowledge that the vectors were linearly independent because or-
thonormality implies independence.

Every s-tuple of orthonormal vectors in Rn is necessarily a set
of linearly independent vectors, and consequently s ≤ n.

Naturally formula (∗) is true for the vectors of V (G), but now comes the
question which stimulates another good idea. Let’s suppose that the s-tuple G
is orthonormal. What would happen if, for any vector v of Rn we associated
another obtained as follows (v · g1)g1 + · · · (v · gs)gs? First of all, let’s give a
name to this vector: we’ll call it p

V (G)(v). Thus, we say that for any vector
v ∈ Rn we have

p
V (G)(v) = (v · g1)g1 + (v · g2)g2 + · · ·+ (v · gs)gs

If G is an s-tuple of orthogonal vectors which are linearly independent (but
not necessarily orthonormal) it is not difficult to see that, for every vector
v ∈ Rn, the vector p

V (G)(v) is obtained in the following way:

p
V (G)(v) =

1
|g1|2

(v · g1)g1 +
1
|g2|2

(v · g2)g2 + · · ·+ 1
|gs|2

(v · gs)gs

Given the importance of the vector p
V (G)(v) we will call it the orthogonal

projection of v onto V (G). Why is it important? Mathematicians have
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shown that taking w = v − p
V (G)(v) we have w · gi = 0 for each i = 1, . . . , s

and hence w is orthogonal to all the vectors of V (G). They have also shown
that the vector p

V (G)(v) is, among all the vectors of V (G), the unique vec-
tor whose distance from v is the minimum possible. An important
consequence of this fact is that the vector p

V (G)(v) does not depend on G but
will give the same result for any orthonormal basis of V (G). In conclusion,
by means of the construction of p

V (G)(v) we have been able to generalize the
geometric considerations that we made at the beginning of this section.

We would now like to satisfy those, among the readers, who are curious to
know how one might prove the assertions of this last paragraph.

For conciseness, let’s set u = p
V (G)(v). First we prove that

v − u is orthogonal to all the vectors of V (G) (1)

Using the linearity of the scalar product it is enough to prove that

(v − u) · gi = 0 for every i = 1, . . . , s (2)

In fact, (v−u)·gi = v ·gi−
∑s

j=1(v ·gj)(gj ·gi). In the sum the addenda
are all equal to zero, except for the i-th which is equal to v · gi and so
(2) is proved and hence (1) is proved. As a first consequence we have
that

if u′ ∈ V (G) then v · u′ = u · u′ (3)

In fact, we have v = (v − u) + u and the conclusion follows from the
linearity of the scalar product and from (1). In particular one has

v · u = |u|2 (4)

Now we can prove the main point, i.e. if u′ ∈ V (G) is any vector then

|v − u|2 ≤ |v − u′|2 with strict inequality if u′ �= u.

Let’s see how to do this. In order to prove that |v− u|2 ≤ |v− u′|2 it
is enough to prove that

|v|2 − 2 v · u + |u|2 ≤ |v|2 − 2 v · u′ + |u′|2 (5)

Using (3) and (4) we are brought to trying to prove that

−2|u|2 + |u|2 ≤ −2 u · u′ + |u′|2 (6)

or, in other words, that

0 ≤ |u|2 − 2 u · u′ + |u′|2 = |u− u′|2 (7)

Now, equation (7) is true and, even more, it’s true that 0 < |u− u′|2
if u′ �= u. The proof is thus finished.
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Let’s look at a specific example.

Example 6.4.2. Consider g1 = (1,−1, 0), g2 = (1, 1, 1). The two vectors are
orthogonal but not of unit length. Thus G = (g1, g2) is an orthogonal basis
for V (G). Now let v = (2, 1,−7) and let’s calculate the orthogonal projection
of v on V . We get

p
V (G)(v) = 1

|g1|2 (v · g1)g1 + 1
|g2|2 (v · g2)g2 = 1

2 (1,−1, 0) + 1
3 (−4) (1, 1, 1)

= (1
2 ,−1

2 , 0)− 4
3 (1, 1, 1) = (−5

6 ,−11
6 ,−4

3)

At this point we are now ready to introduce a procedure that, starting from
an s-tuple G of vectors which are linearly independent, furnishes us with an
orthonormal basis of V (G). This procedure is called the Gram-Schmidt
orthonormalization procedure.

We start with an s-tuple G = (g1, . . . , gs) of linearly independent vectors.
The vector g1 is not the zero vector and hence we can consider its normal-
ization

g′1 = vers(g1)

and the vector

g′2 = vers
(
g2 − p

V (g′
1)

(g2)
)

= vers
(
g2 − (g2 · g′1)g′1

)
It is easy to check that g′1 · g′2 = 0. Moreover g′1, g

′
2 are two vectors of unit

length and, as we have constructed them, it is also easy to see that V (g1, g2) =
V (g′1, g′2). We can continue in this way up to the last vector, which has the
form

g′s= vers
(
gs− p

V (g′
1,...,g′

s−1)
(gs)

)
= vers

(
gs−(gs·g′1)g′1 − · · · −(gs·g′s−1)g

′
s−1

)
In this way we obtain a new basis G′ = (g′1, . . . , g

′
s) of V (G) which, by

construction, is orthonormal. Let’s see an explicit example.

Example 6.4.3. Let G = (g1, g2) where g1 = (1, 1, 0), g2 = (1, 2, 1). The
two vectors are linearly independent and thus are a basis for V (G). But,
they certainly are not an orthonormal basis. Let’s apply the Gram-Schmidt
procedure. We construct the vector

g′1 = vers(g1) =
1√
2
(1, 1, 0) = (

√
2

2
,

√
2

2
, 0)

Now we construct the vector

g2− (g2 · g′1)g′1=(1, 2, 1)− 3√
2

1√
2
(1, 1, 0) = (1, 2, 1)− 3

2
(1, 1, 0) = (−1

2
,
1
2
, 1)

and its normalization g′2 =
√

6
3 (−1

2 , 1
2 , 1) = (−

√
6

6 ,
√

6
6 ,

√
6

3 ). The pair G′ =
(g′1, g

′
2) is an orthonormal basis for V (G).
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6.5 The QR Decomposition

The orthonormalization procedure described in the previous section also has
an important consequence for the matrices we have been discussing. In fact,
consider the matrix M = ME

G which, by the hypothesis on G (i.e. that G
consists of an s-tuple of linearly independent vectors) has rank s. In addition
let’s consider the matrix Q = ME

G′ and observe that it is an orthonormal
matrix by construction. What is the relationship between M and Q? We
already know that M = ME

G , Q = ME
G′ and thus M = Q MG′

G .
If we look carefully at the formula g′s = vers

(
gs − (gs · g′1)g′1 − · · · −

(gs · g′s−1)g
′
s−1

)
, we see that every vector g′s of G′ is a linear combination

of vectors in G having subscript less than or equal to s. For example, g′2 =
vers

(
g2−(g2 ·g′1)g1

)
is a linear combination of g2 and g1. It’s enough to reflect

on this for a moment in order to understand immediately that the matrix
MG

G′ is upper triangular. Moreover, on the diagonal there are the reciprocals
of the moduli of the non-zero vectors of G and hence are positive numbers .
The matrix MG′

G , which is the inverse of MG
G′ , has the same properties (see

formula (1) in Section 3.5). In conclusion, putting R = MG′
G , we can say that

the matrix M can be put in the form

M = QR

which, in fact, is known as the QR decomposition or the QR form of M
which encapsulates, in matrix form, the Gram-Schmidt procedure. We arrive
at the following proposition.

Every matrix M of type (n, s) and rank s can be written in the
form QR, where Q is orthonormal and R is upper triangular
with positive diagonal.

Let’s not get too nervous about the fact that we have to calculate the inverse
of a matrix. In fact, we only have to find the inverse of a triangular matrix,
and this operation is particularly easy. The reasons why this is easy follow
from some considerations that we made in Section 3.3. We’ll use them in the
following example.

Example 6.5.1. We’ll return to example 6.4.3. We had the matrix

M =

⎛
⎝ 1 1

1 2
0 1

⎞
⎠

Recall that g′1 = 1√
2
g1 and hence g1 =

√
2g′1. Moreover, g′2 =

√
6

3

(
g2− 3

√
2

2 g′1
)

and hence g2 = 3
√

2
2 g′1 +

√
6

2 g′2. Thus, M = QR, where

Q =

⎛
⎜⎜⎝
√

2
2 −

√
6

6√
2

2

√
6

6

0
√

6
3

⎞
⎟⎟⎠ R =

(√
2 3

√
2

2

0
√

6
2

)
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The method we just used above is not the only one you can use to arrive
at the QR decomposition. Inasmuch as the result is so important, mathe-
maticians have thrown themselves into the search for other ways to do this.
So, to conclude this section in a worthy fashion let’s look at an unexpected
alternate approach to calculating the QR decomposition which uses
the Cholesky decomposition.

We start off then, as before, with an s-tuple of linearly independent vectors
G = (g1, . . . , gs) and consider the matrix A = ME

G .
We already know that AtrA is positive semidefinite and now we will see

that it is, in fact, positive definite. Recall that to prove this, it is enough to
show that AME

v = 0 implies that ME
v = 0, and this last thing is equivalent to

the fact that the vectors of G are linearly independent. Thus we have verified
that AtrA is positive definite and hence we know that it has a Cholesky
decomposition. Thus we have

AtrA = U trU

with U upper triangular and having positive diagonal. If we put V = U−1 we
also have that V is upper triangular with positive diagonal (see Section 3.5)
and we get

V trAtr AV = I

Putting Q = AV , the preceding formula says that QtrQ = I and hence Q is
orthonormal. Therefore

A = QU

which is the desired decomposition.
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Exercises

Exercise 1. Consider the following matrix

A =

⎛
⎝ 1 2 3

4 5 6
7 8 9

⎞
⎠

(a) Calculate the rank of A in two different ways: first as the maximum
number of linearly independent rows and then as the maximum number
of linearly independent columns.

(b) Calculate B = AT A and decide if B has a Cholesky decomposition.

Exercise 2. Consider the set S of all the matrices we get from I3 by
permuting its columns in all possible ways.

(a) How many matrices are there in S? (possible answers: 12, 3, 6, 4)
(b) Are they all orthogonal?
(c) Is the product of two matrices in S back again in S?

Exercise 3. Let G be the pair of vectors ((1, 1, 0), (−1, 1, 1)) in R3 and
let V = V (G) be the space they generate.

(a) Decide if G is an orthonormal basis for V .
(b) Find all the vectors of R3 which have the same orthogonal projection

on V as (1, 1, 1).
(c) Setting A = ME

G , find the QR decomposition of A.

Exercise 4. Consider the set E of all the orthonormal matrices in Mat3(R)
which have (0 1 0)tr as their first column.

(a) Write down three distinct matrices in E.
(b) Are there symmetric matrices in E?
(c) Are there matrices in E with determinant 1?

Exercise 5. Let v1 = (1, 0, 3), v2 = (2, 1, 0), v3 = (3, 1, 3), v = (3, 3, 3)
be vectors in R3 and let G = (v1, v2, v3).

(a) Find the orthogonal projection, p
V (G) (v), of v on V (G).

(b) Find a vector u ∈ R3, u �= v such that p
V (G) (v)=p

V (G) (u).

(c) Is the difference u− v orthogonal to the vector (1, 1,−3)?

Exercise 6. Consider the vectors e1 = (1, 0, 0), e3 = (0, 0, 1), ua =
(1, a, 2) in R3. Find the values of a ∈ R for which the orthogonal projection
of e1 and of e3 on V (ua) coincide.
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Exercise 7. We saw in this chapter: if g1, . . . , gs ∈ Rn are such that
G = (g1, . . . , gs) is an orthonormal basis for V (G) and if v ∈ Rn, then the
orthogonal projection of v on V (G) is given by the formula p

V (G) (v) =
(v · g1)g1 + (v · g2)g2 + · · ·+ (v · gs)gs.
Prove that if G is only an orthogonal basis of V (G) then one has

p
V (G)(v) =

1

|g2|2 (v · g1)g1 +
1

|g2|2 (v · g2)g2 + · · · + 1

|gs|2 (v · gs)gs

Exercise 8. Let n, r be natural numbers. Set I equal to the identity
matrix of type n and let Q ∈ Matn,r(R) be an orthogonal matrix. Prove
the following facts about the matrix A = I − 2QQtr.

(a) A is symmetric.
(b) A is orthogonal.
(c) A2 = I .

Exercise 9. Consider the three properties of the preceeding exercise and
prove that any two of them implies the third.

Exercise 10. Find the QR decomposition of the following matrix

A =

⎛
⎜⎜⎜⎜⎝

2 3 4 2 2
0 1 7 1 6
0 0 10 4 6
0 0 0 1 3
0 0 0 0 3

⎞
⎟⎟⎟⎟⎠

Exercise 11. Consider the following system of homogeneous linear equa-
tions with coefficients in R{

x1 − x2 + x3 − 4x4 − 4x5 = 0
x1 − 5x2 + x3 − 14x4 − 11x5 = 0

and let V be the vector subspace of R5 consisting of its solutions.

(a) Calculate a basis for V .
(b) Find the dimension of V .

@ Exercise 12. Consider the following system of homogeneous linear equa-
tions with coefficients in R⎧⎨

⎩
3x1 − x2 + x3 − 4x4 − 4x5 = 0
2x1 − 5x2 + 2x3 − 14x4 − 11x5 = 0

−5x1 + 3x2 + x3 − 7x4 + 8x5 = 0

and let V be the vector subspace of R5 consisting of its solutions.

(a) Calculate a basis for V .
(b) Find the dimension of V .
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Projections, Pseudoinverses and Least Squares

i cristalli sono lenti a volte immobili
e il vetro è spesso ma non sempre;

l’idea è sottile ma non c’entra
(From “Riflessioni di Francesco”

by Francesco )

The farmers would say that we are fast approaching the harvest season. We
wouldn’t want to disillusion them and so we will begin (in this section) to
harvest some of the fruit generated by the work of the previous sections.
In particular we will discover how to solve, in various ways, a very impor-
tant problem which goes by the name of the problem of least squares. But,
we have to first equip ourselves with some important tools, namely linear
transformations.

In mathematics we discover very quickly that right next to the idea of
a linear object is the necessary idea of a linear transformation, sometimes
referred to as a homomorphism of vector spaces (a strange name that actually
sounds a bit threatening!). I would like to say that we are in for a surprise.
But, in reality, it is not going to be a surprise to anyone if I say that the
information of a linear transformation can be put in a matrix. We will begin
with the idea of a projection. These are special matrices which allow us to
extend the idea of orthogonal projection to spaces which are much more
abstract than the physical spaces we are used to.

And what about matrices which don’t have inverses? No fear, in this sec-
tion we will also introduce the idea of a pseudoinverse. But, why have I even
raised that question? And why this strange name? Don’t lose heart, these are
the tools we will use to deal with the problem of least squares. The reader
will also soon discover what we mean by the phrase “least squares”. We are
not dealing with teeny weeny squares. . .

Robbiano L.: Linear Algebra for everyone
c© Springer-Verlag Italia 2011
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7.1 Matrices and Linear Transformations

We are about to rethink the discussion about projections of subspaces that
we had in the preceding chapter (when we implemented the Gram-Schmidt
procedure) and try to improve the consequences. Before doing that we have
to make an important digression. We saw in Section 6.4 that, given an s-tuple
of vectors G = (v1, . . . , vs) which are an orthonormal basis of V (G), we can
associate to every vector v in Rn the vector p

V (G)(v), which is the orthogonal
projection of v onto V (G). When we do this operation for every vector we
have defined a function

p
V (G) : Rn −→ R

n

What kind of function is this? In order to respond to this question let’s do a
few experiments. In particular let’s take another look at Example 6.4.2 and
let’s calculate the three vectors p

V (G)(e1), p
V (G)(e2), p

V (G)(e3). We have

p
V (G)(e1) = 1

|g1|2 (e1 · g1)g1 + 1
|g2|2 (e1 · g2)g2 = 1

2
(1,−1, 0) + 1

3
(1, 1, 1)

= (1
2
,−1

2
, 0) + ( 1

3
, 1

3
, 1

3
) = (5

6
,−1

6
, 1

3
)

p
V (G)(e2) = 1

|g1|2 (e2 · g1)g1 + 1
|g2|2 (e2 · g2)g2 = −1

2 (1,−1, 0) + 1
3 (1, 1, 1)

= (−1
2 , 1

2 , 0) + (1
3 , 1

3 , 1
3 ) = (−1

6 , 5
6 , 1

3)

p
V (G) (e3) = 1

|g1|2 (e3 · g1)g1 + 1
|g2|2 (e3 · g2)g2 = 0 + 1

3 (1, 1, 1)
= ( 1

3 , 1
3 , 1

3 )

Recall that in Example 6.4.2 we calculated the projection of the vector
v = (2, 1,−7) onto the vector subspace V = V (G) of R3. Notice the equality
v = 2e1 + e2− 7e3 and let’s calculate 2p

V (G)(e1) + p
V (G)(e2)− 7p

V (G)(e3), i.e.
the linear combination of the projections of the three vectors of the canonical
basis made with the same coefficients with which we expressed v as a linear
combination of the canonical basis. We obtain

2p
V (G)(e1) + p

V (G)(e2) − 7p
V (G)(e3) = 2(5

6 ,−1
6 , 1

3) + (−1
6 , 5

6 , 1
3) − 7(1

3 , 1
3 , 1

3)
= (− 5

6 ,−11
6 ,−4

3 )

This is exactly the vector p
V (G)(v) we already calculated in Example 6.4.2!

Let’s sum up what we just saw. We have before us an example for which the
following property is true: if v = a1e1 + a2e2 + a3e3, then its projection onto
V (G) is

p
V (G)(v) = a1pV (G)(e1) + a2pV (G)(e2) + a3pV (G)(e3)

In fact, if we look carefully at how we defined p
V (G) , it’s clear that such a

property is true not only for the vector v above, but for all the vectors of R3.
And with just a bit more work we observe that the phenomenon we just saw
is actually a property of all the functions of the type p

V (G) . Mathematicians
say that the functions p

V (G) respect (don’t change) linear combinations.
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By now the reader knows a bit about how things go in mathematics. Con-
sequently, it won’t surprise you when I ask the following question: are there
other functions which respect linear combinations? If that question didn’t
leap spontaneously to your mind, don’t worry; mathematicians have already
answered this question. The answer is a result of extreme importance and
soon we will see why. For the moment it is a good idea for us to experiment
with some easy exercises to discover other functions with this property. An
easy example is the identity function from Rn to Rn. Another example of
such a function is the function which associates to each vector its negative.
A function which does not have this property is the function from R2 to R2

which associates to the vector (a1, a2) the vector (a2
1, a

2
2). We see that (2, 2)

is transformed into (4, 4) while we have (2, 2) = 2e1 + 2e2 and yet e1 is
transformed into e1, and e2 is transformed into e2. So, if the property were
valid for this function we would have the equality 2e1 + 2e2 = (4, 4), which
is clearly not the case.

In fact, the property which is common to all the functions above (apart
from the last one) can be described in the following way. Let ϕ be a function:
for every relation between vectors of the type v = a1v1 + · · · , arvr one has
ϕ(v) = a1ϕ(v1) + · · · + arϕ(vr). Functions with this property are at the
center of mathematics and, in particular, of linear algebra and are called
linear transformations.

We have now arrived at another turning point. The following reasoning
brings forward, for the n-th time, the central importance of the idea of a
matrix and indeed, it cannot be said too often, provides the prerequisites for
many of the most important applications of mathematics. Let ϕ be a linear
transformation from Rc to Rr. We will write

ϕ : Rc −→ Rr

Let F = (f1, . . . , fc) be a basis for Rc and G = (g1, . . . , gr) a basis for Rr.
If we know the vectors ϕ(f1), . . . , ϕ(fc), we can write them in a unique way
as a linear combination of the elements of G. If we call ϕ(F ) the c-tuple
ϕ(f1), . . . , ϕ(fc), then we know the matrix MG

ϕ(F ) . We can now see a very
important fact. When we fix the two bases F and G, all the information
about ϕ is contained in this matrix. In fact, if v is any vector whatsoever
of Rc one has the equality, v = FMF

v , where MF
v is uniquely determined

(recall that F is a basis). The linearity of ϕ implies that

ϕ(v) = ϕ(F ) MF
v (1)

On the other hand we have just called MG
ϕ(F ) the matrix for which

ϕ(F ) = G MG
ϕ(F ) (2)
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Combining (1) and (2) one gets

ϕ(v) = G MG
ϕ(F ) MF

v (3)

This makes very clear the fact that, having fixed the bases F and G, the
information contained in ϕ is concentrated in the matrix MG

ϕ(F ).
This observation confers the greatest importance on linear transformations.
Moreover, since it is also true that

ϕ(v) = G MG
ϕ(v) (4)

we deduce the following formula

MG
ϕ(v) = MG

ϕ(F ) MF
v (5)

If, instead of a single vector we had an s-tuple of vectors S = (v1, . . . , vs), we
could apply (5) to all the vectors of S and obtain the following fundamental
formula

MG
ϕ(S) = MG

ϕ(F ) MF
S (6)

We note that if ϕ : Rc −→ Rr is a linear transformation and if the two bases
chosen are the canonical basis of Rc and of Rr (respectively) then formula
(5) gives the following fact.

If v is any vector in Rc then the components of v transformed
by ϕ are linear homogeneous expressions in the components
of v.

The last part of this section is dedicated to some mathematical ideas con-
nected to linear transformations and is related to what was said at the end
of Section 6.3.

Let ϕ be a linear transformation from Rc to Rr . As we have already seen,
the matrix MEr

ϕ(Ec) contains all the information about ϕ. If we consider the
set Im(ϕ), called the image of ϕ, i.e. the set of all the vectors in Rr which
are the transforms of vectors in Rc, we have the following rules, which an
attentive reader should have no trouble in proving.

(1) The set Im(ϕ) is a vector subspace of Rr.

(2) Let t = rk(MEr

ϕ(Ec)) and choose t linearly independent columns of

MEr

ϕ(Ec) , then the corresponding vectors form a basis for Im(ϕ).

(3) dim(Im(ϕ)) = t

If we denote by Ker(ϕ), called the kernel of ϕ, the set of all the vectors v
in Rc for which ϕ(v) = 0, we have the following rules, which the reader can
prove using rules (1) and (2) at the end of Section 6.3.
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(1) The set Ker(ϕ) is a vector subspace of Rc.
(2) Consider the system of linear equations MEr

ϕ(Ec)x = 0. Then let

t = rk(MEr

ϕ(Ec)) and choose c − t free variables and attribute to
them the values (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1). The re-
sulting solutions we obtain to the system of homogeneous linear
equations form a basis for Ker(ϕ).

(3) dim(Ker(ϕ)) = c− t

Let’s look at an example that will illustrate the new mathematical ideas
which have just been introduced.

Example 7.1.1. Consider the function ϕ : R3 −→ R2 defined by the for-
mula ϕ(a, b, c) = (a + b, b − 2c). Notice that the components of ϕ(v) are
linear homogeneous expressions in the components of v and thus ϕ is a linear
transformation. In order to calculate ME2

ϕ(E3) we must calculate the transfor-
mations of the members of the canonical basis of R3 and express those im-
ages using the canonical basis for R2. One has the equalities ϕ(e1) = (1, 0),

ϕ(e2) = (1, 1), ϕ(e3) = (0,−2), from which it follows that the matrix ME2
ϕ(E3)

is the following

ME2
ϕ(E3) =

(
1 1 0
0 1 −2

)

Now, let’s do a little experiment. If v is the vector (2,−2, 7), then applying
the definition one has

ϕ(v) = (0,−16)

Applying formula (3) one gets

ϕ(v) = E2

(
1 1 0
0 1 −2

) ⎛
⎝ 2
−2

7

⎞
⎠ = 0e1 − 16e2 = (0,−16)

At this point it would be good if the reader expressed surprise at the co-
incidence. Let’s try to verify the rules we described above. One sees that
the matrix ME2

ϕ(E3) has rank 2, for example by observing that the first two
columns are linearly independent. Thus, one has that dim(Im(ϕ)) = 2 and a
basis for Im(ϕ) is, for example, (ϕ(e1), ϕ(e2)).

The homogeneous linear system associated to the matrix ME2
ϕ(E3) is the

following {
x1 + x2 = 0

x2 − 2x3 = 0

which transforms into the following{
x1 + 2x3 = 0

x2 − 2x3 = 0
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Let’s consider x3 as the free variable, and give it the value 1 and so obtain
the solution (−2, 2, 1). This vector is a basis for Ker(ϕ) and, in fact, we know
that all the solutions of the system are (−2a, 2a, a), i.e. all multiples of the
solution (−2, 2, 1).

7.2 Projections

è difficile mettere a fuoco,
se brucia il proiettore

After the short excursion into the land of linear transformations that we made
in the last section, let’s return to the example that we used to motivate that
excursion, i.e. orthogonal projections (see Section 6.4). Let’s recall the nature
of the problem. Suppose that we have a subspace V of Rn of dimension s
and an orthonormal basis for it, say G = (g1, . . . , gs). So, V = V (G) and
Q = ME

G is an orthonormal matrix. At this point we begin a kind of technical
reasoning that is typical of mathematics. I could avoid this and write only the
final formula, but in this case, given the practical importance of the problem,
an importance that goes beyond the theory, I have preferred to put myself
in math mode and furnish a complete description of the steps that will bring
us to the important conclusion. You’ll also be able to see a mathematician
at work. It is completely clear (really) that for every vector v ∈ Rn one has
the equality v = (e1 · v, e2 · v, . . . , en · v). We thus obtain the equality

Q =

⎛
⎜⎜⎜⎝

e1 · g1 e1 · g2 · · · e1 · gs

e2 · g1 e2 · g2 · · · e2 · gs

...
...

...
...

en · g1 en · g2 · · · en · gs

⎞
⎟⎟⎟⎠ (1)

To the s-tuple G we can associate the function pV : Rn −→ Rn defined by

pV (v) = (v · g1)g1 + (v · g2)g2 + · · ·+ (v · gs)gs (2)

which associates to every vector of Rn its orthogonal projection onto V . For
simplicity we will call p this function pV and observe that p is a linear trans-
formation from Rn to Rn. Choosing E as a basis for Rn, the transformation
is completely described by the matrix ME

p(E). Now we pose an important
question, or better, we pose a question that will turn out to be important
because of the importance of the answer. The question is: how is the matrix
ME

p(E) made? From formula (2) we know that

p(e1) = (e1 · g1)g1 + (e1 · g2)g2 + · · ·+ (e1 · gs)gs

p(e2) = (e2 · g1)g1 + (e2 · g2)g2 + · · ·+ (e2 · gs)gs

· · · = · · · · · ·
p(en) = (en · g1)g1 + (en · g2)g2 + · · ·+ (en · gs)gs

(3)
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Moreover we observe that

Qtr =

⎛
⎜⎜⎜⎝

e1 · g1 e2 · g1 · · · en · g1

e1 · g2 e2 · g2 · · · en · g2

...
...

...
...

e1 · gs e2 · gs · · · en · gs

⎞
⎟⎟⎟⎠ (4)

and thus (3) can be read as

p(E) = G Qtr (5)

from which we can immediately deduce the equality

MG
p(E) = Qtr (6)

Using (3) and a handy generalization (mathematicians will forgive this expres-
sion, non-mathematicians won’t worry about it) of formula (e) in Section 4.8,
one can say that

ME
p(E) = ME

G MG
p(E) (7)

All that is left is to remember the equality ME
G = Q and expression (6) in

order to reread (7) in the following way

ME
p(E) = Q Qtr (8)

This is the first important answer. There still remains open another possibility
which is the reason for the following question. What happens if the basis
for V is not orthonormal? So, let’s consider a non-orthonormal basis for V
composed of an s-tuple which we will call G′ = (g′1, . . . , g

′
s). Put M = ME

G′

and let’s proceed by analogy with what was said in the special case where
G′ was orthonormal. First let’s make a QR decomposition of M with Q
orthonormal and R upper triangular with positive diagonal (see Section 6.5).
We have

M = QR and so Q = MR−1 (9)

Naturally, the columns of Q are formed by the coordinates of vectors in an
orthonormal basis G of V and we have the equality

M = ME
G′ Q = ME

G R = MG
G′ (10)

Using (6), (10) and the identity MG′
p(E) = MG′

G MG
p(E) we obtain

MG′
p(E) = R−1Qtr (11)

and hence, multiplying by the identity matrix, I = (Rtr)−1Rtr, we have

MG′
p(E) = R−1(Rtr)−1RtrQtr (12)



156 7 Projections, Pseudoinverses and Least Squares

From (12) and (9) we deduce that

MG′
p(E) = R−1(Rtr)−1M tr (13)

We also know that QtrQ = I and from (9) it follows that

M trM = (QR)trQR = RtrQtrQR = RtrR (14)

and hence we have

(M trM)−1 = (RtrR)−1 = R−1(Rtr)−1 (15)

Substituting into (13) we obtain a first important formula,

MG′
p(E) = (M trM)−1M tr (16)

A second important formula is obtained by combining (16) with the equality
ME

p(E) = ME
G′ MG′

p(E) in analogy with (7). We obtain

ME
p(E) = M(M trM)−1M tr (17)

Having arrived at the answer it’s time to take a moment to catch our breath
and review the situation.

We began with a subspace V of Rn. We also were given a basis
G′ of V and we put M = ME

G′ then

MG′
p(E) = (M trM)−1M tr ME

p(E) = M(M trM)−1M tr (16) (17)

Given an orthonormal basis G of V and putting Q = ME
G , we

have

MG
p(E) = Qtr ME

p(E) = QQtr (6) (8)

Formulas (8) and (17) suggest that we consider a particular matrix to rep-
resent the orthogonal projection on the space generated by the columns
of M . In fact, if M is a matrix of rank s in Matn,s(R), the matrix ME

p(E) =
M(M trM)−1M tr is called the projection onto the space generated by the
columns of M , or more conveniently, the projection onto M . If M is or-
thonormal, the formula for the projection simplifies since we have the equality
M trM = I, and then we have MG

p(E) = M tr, ME
p(E) = MM tr. In this form we

see that formulas (6), (8) are special cases of formulas (16), (17). They seem
very different only because the orthonormal matrices are usually called Q
rather than M .

Example 7.2.1. Consider the vectors v1 = (1, 0, 1, 0), v2 = (−1,−1, 1, 1) in
R4. Let F = (v1, v2) and let V be the subspace of R4 generated by F . The
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two vectors are linearly independent and hence F is a basis for V , but it
is not an orthonormal basis. Thus, the projection onto V is obtained using
formula (17). Setting M = ME

F , we have

M (M trM)−1M tr =

⎛
⎜⎜⎝

1 −1
0 −1
1 1
0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

⎛
⎜⎜⎝

1 −1
0 −1
1 1
0 1

⎞
⎟⎟⎠

tr ⎛
⎜⎜⎝

1 −1
0 −1
1 1
0 1

⎞
⎟⎟⎠

⎞
⎟⎟⎠
−1 ⎛

⎜⎜⎝
1 −1
0 −1
1 1
0 1

⎞
⎟⎟⎠

tr

and making the calculations we see that

M (M trM)−1M tr =

⎛
⎜⎜⎜⎜⎝

3
4

1
4

1
4 −1

4

1
4

1
4 −1

4 −1
4

1
4 −1

4
3
4

1
4

−1
4
−1

4
1
4

1
4

⎞
⎟⎟⎟⎟⎠

We conclude this section with two mathematical gems. We have just seen
that if M ∈Matn,s(R) has rank s, the matrix M(M trM)−1M tr is called the
projection onto the space generated by the columns of M . What happens if
the matrix doesn’t have maximal rank?

Let’s suppose that A ∈ Matn,r(R) has rank s < r. From Section 6.3 we
know that there are s columns of A that are linearly independent. If we
call M the submatrix of A formed by those s columns, we have M of maxi-
mal rank and the vector space V generated by the columns of A coinciding
with that generated by the columns of M . Thus, the projection onto V is
M(M trM)−1M tr. The attentive reader will have noticed that the choice of
the s linearly independent columns is not canonical. What happens if we
make a different choice? Or, more generally, if we change the basis for V ?
And now we have the very satisfying result that the projection doesn’t
depend on the basis chosen. To some, perhaps, this not only seems a very
satisfactory discovery but they would even like to see a proof. Let’s try to
please those people.

Let A ∈ Matn,r(R) and let s = rk(A). Let V be the vector space
generated by the columns of A and let G be a basis for V formed
by s linearly independent columns of A and let F be any other basis
for V . Setting M = ME

G , we have seen that the projection onto V
is M(M trM)−1M tr. Setting N = ME

F , and setting P = MG
F we

have ME
F = ME

G MG
F and hence N = MP . In order to prove the

independence which we spoke of above, we must establish the equality

N(N trN)−1N tr = M(M trM)−1M tr
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Here’s the proof.

N(N trN)−1N tr = (MP )
(
(MP )tr(MP )

)−1(MP )tr

= (MP )
(
(P trM tr)(MP )

)−1(MP )tr

= (MP )
(
P tr(M trM)P

)−1(MP )tr

= (MP )
(
P−1(M trM)−1(P tr)−1

)
(MP )tr

= MPP−1(M trM)−1(P tr)−1P trM tr

= M(M trM)−1M tr

End of the proof.

The second gem is the following: projections are symmetric matrix
which are idempotent i.e. matrices which equal their square and pos-
itive semidefinite. Would you like to see the proof? I am going to assume
the answer is YES.

In order to prove the matrix is symmetric it’s enough to check that it is

equal to its transpose (and that is easy). To prove the matrix is idempotent

it’s enough to calculate M (M trM)−1M trM (MtrM)−1Mtr. Making the

obvious simplifications we find the matrix with which we began. Now,

calling such a matrix A we now know that A = Atr and that A = A2

and hence A = AA = AtrA, from which we conclude that A is positive

semidefinite.

7.3 Least Squares and Pseudoinverses
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In the last section we collected a bunch of mathematical facts. We are now
adequately prepared and we can confront and resolve, with relative ease, the
famous problem of least squares.

Problem of least squares: Case I . If you are given an orthonormal matrix
Q ∈ Matn,s(R) and a vector v in Rn, how do you find a vector u which is
both a linear combination of the columns of Q and at the same time has its
distance from v a minimum?

Solution. Let’s call G the s-tuple of vectors whose coordinates, with respect
to E are the columns of Q, i.e. Q = ME

G . Given that we are looking for a
vector of the form u = GMG

u , we need to find MG
u . We have already seen

that the vector in V (G) which is at a minimal distance from u is the vector
u = p(v) where p = p

V (G) . From formula (6) of Section 7.2 we deduce that

MG
p(v) = MG

p(E) ME
v = Qtr ME

v
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The vector solution is thus

p(v) = G QtrME
v (18)

Given that G = EME
G = EQ, we also have

p(v) = E Q QtrME
v (19)

Problem of least squares: Case II. If you are given a vector v in Rn

and a matrix M ∈Matn,s(R) of rank s, how do you find the vector which is
both a linear combination of the columns of M and, at the same time, has
minimum distance from v?

Solution. As in the first case, let’s call G′ the s-tuple of vectors whose
coordinates, with respect to E, are the columns of M , i.e. such that M = ME

G′ .
Since we want u = G′MG′

u , the problem asks us to find MG′
u . We already said

that u = p(v) and from formula (16) one deduces that

MG′
p(v) = MG′

p(E) ME
v = (M trM)−1M tr ME

v

The solution vector is thus

p(v) = G′ (M trM)−1M trME
v (20)

Given that G′ = EME
G′ = EM , one also has the equality

p(v) = E M (M trM)−1M trME
v (21)

Now is a good time to see an example.

Example 7.3.1. Let’s have another look at Example 7.2.1. In particular,
let’s consider the vectors v1 = (1, 0, 1, 0), v2 = (−1,−1, 1, 1) of R4, the pair
F = (v1, v2) and the subspace V of R4 generated by F . Set M = ME

F . We
calculated the projection A = M (M trM)−1M tr and we obtained

A =

⎛
⎜⎜⎜⎜⎝

3
4

1
4

1
4 −1

4

1
4

1
4 −1

4 −1
4

1
4
−1

4
3
4

1
4

−1
4 −1

4
1
4

1
4

⎞
⎟⎟⎟⎟⎠

Now let’s use A to calculate the orthogonal projection on the subspace V
of an arbitrary vector and in this way solve the least squares problem. For
example, if we let e1 = (1, 0, 0, 0), then the vector in V at minimum distance
from e1 is the vector we get from formula (21). That vector is thus

E AME
e1

= (
3
4
,

1
4
,

1
4
, −1

4
)
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In Section 6.4 we saw that the orthogonal projection on a vector subspace V
can be calculated starting with any orthonormal basis of the subspace V . In
Section 7.2 we saw that we could make that calculation starting with any
basis of V , not necessarily even orthogonal. Some natural questions arise.
− Is it possible to calculate the orthogonal projection onto a subspace V

starting only with a system of generators of V ?
− Is it possible to solve the least squares problem for V starting with any

system of generators for V ?
We actually already know how to answer these questions. In fact, given a
system of generators S of V and calling A the matrix ME

S , it’s enough to cal-
culate s = rk(A), and then to let M be a submatrix of A formed by s linearly
independent columns of A and calculate the projection M(M trM)−1M tr (see
formula (17) and (21) of the previous section).

Although we have answered the questions asked, they can be interpreted
in another way. We could ask ourselves if it is possible to find a formula which
only uses the matrix A directly (i.e. doesn’t first try to find the submatrix M)?
To answer this question we need a decomposition which we can associate to
any matrix whatever. First let’s look at an example.

Example 7.3.2. Let A be the matrix

A =

⎛
⎜⎜⎜⎜⎝

1 1 0 1
0 1 −2 3
2 1 2 −1
1 2 −2 4
1 0 2 −2

⎞
⎟⎟⎟⎟⎠ ∈Mat5,4(R)

Using the rules we saw in Section 6.3 it is possible to see that rk(A) = 2
and that, for example, the first two columns of A are linearly independent.
In particular, this implies that the first two columns of A are a basis for the
subspace generated by the columns of the matrix. It follows that the third
and fourth column are linear combinations of the first two. In fact, solving
the two following two systems of linear equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 + x2 = 0
x2 = −2

2x1 + x2 = 2
x1 + 2x2 = −2
x1 = 2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 + x2 = 1
x2 = 3

2x1 + x2 = −1
x1 + 2x2 = 4
x1 = −2

we find the solution (2,−2) for the first and (−2, 3) for the second. These
mean that the third column is twice the first minus twice the second, while
the fourth column is minus twice the first plus three times the second. It
follows that the matrix A may be represented as the product of two matrices
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of maximal rank equal to 2. In fact, we have the following identity⎛
⎜⎜⎜⎜⎝

1 1 0 1
0 1 −2 3
2 1 2 −1
1 2 −2 4
1 0 2 −2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1 1
0 1
2 1
1 2
1 0

⎞
⎟⎟⎟⎟⎠

(
1 0 2 −2
0 1 −2 3

)

Using the same type of reasoning as in this example, we can see that such a
decomposition is valid for any matrix. We can say the following.

Given a number field K and a matrix A ∈ Matn,r(K) of rank s, we
can find two matrices M ∈Matn,s(K) and N ∈Matr,s(K), both of
rank s, for which we have the following relation A = MN tr. This
way of writing A is called the MN tr form (or decomposition)
of A.

Mathematicians denote by A+ (or, unfortunately, as often happens, with
other symbols) the matrix

A+ = N(N trN)−1(M trM)−1M tr

and they call it the pseudoinverse or the Moore-Penrose inverse of A.
In the special case when s = r, the decomposition of A is simply A = AItr,

and in that case A+ = (AtrA)−1Atr. If, in addition, A is orthonormal,
then (AtrA) = I and hence A+ = Atr.
The alert reader will have noticed that these matrices have already made
their appearance in formulas (6) and (16). In Example 7.3.2 we have

A+ =

⎛
⎜⎜⎜⎝

1
13 0 2

13
1
13

1
13

19
312

1
48

21
208

17
208

25
624

5
156

−1
24

11
104

−1
104

23
312

3
104

1
16

−1
208

19
208

−7
208

⎞
⎟⎟⎟⎠

There are many things one can say about the notion of the pseudoinverse,
but we will limit ourselves to a few essentials. The importance of the pseu-
doinverse comes from its valuable characteristics. In particular, the following
properties are noteworthy.
(1) The matrices AA+ and A+A are symmetric.
(2) We have the following equality, AA+A = A.
(3) The following equality is also true, A+AA+ = A+.
(4) If A is invertible, then A+ = A−1.
(5) The matrix AA+ is the projection on the space generated by

the columns of A.
The proofs of these facts are easy and the attentive reader would not have to
work very hard to construct the proofs. As you might guess, properties (2),
(3) and (4) justify the name of pseudoinverse for the matrix A+. Property (5)
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allows us to respond to the first question we raised above, i.e. is it possible
to calculate the orthogonal projection on a subspace V starting just from an
arbitrary system of generators of V ? The answer is clear, the projection is
simply AA+.

There is, for sure, some reader, somewhere, who will make the following
objection. The expression AA+ depends on A only in appearance inasmuch as
you need to find a submatrix M of A, of maximal rank, in order to calculate
A+. So, you might as well have used the expression M(M trM)−1M tr directly
to find the projection! Such an objection is very pertinent but there is an
elegant escape route. It’s clear that the decomposition of A as A = MN tr is
not unique since it depends on the choice of the linearly independent columns
of A that we choose. Fortunately (that is the way mathematicians express
themselves!) we can prove that the pseudoinverse does not depend on
which submatrix M we choose but depends only on the matrix A. The
attentive reader will have noticed that this assertion is contained in the first of
the two mathematical gems that we proved at the end of Section 7.2. We can
be still more precise and prove that A+ is the unique matrix which enjoys
the properties (1), (2), (3) listed earlier. Using this fact, mathematicians
have discovered that there are other methods for calculating A+ that do not
need the preliminary calculation of the matrix M .

It’s also easy now to answer the second question we asked above, namely:
is it possible to solve the least squares problem starting with any system of
generators of the space V ? We will put the problem in the form we have
already used in the other cases.

Problem of least squares: Case III. If we have a matrix A∈ Matn,r(R)
and a vector v in Rn how do we find a vector u which is both a linear com-
bination of the columns of A and has its distance from v a minimum?

Solution. By looking at formula (21) and property (5) we conclude that
the vector solution is

p(v) = E AA+ME
v (22)

Let’s take another look at Example 7.3.2.

Example 7.3.3. In Example 7.3.2 we had the matrix

A =

⎛
⎜⎜⎜⎜⎝

1 1 0 1
0 1 −2 3
2 1 2 −1
1 2 −2 4
1 0 2 −2

⎞
⎟⎟⎟⎟⎠
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and we calculated its MN tr decomposition as

M =

⎛
⎜⎜⎜⎜⎝

1 1
0 1
2 1
1 2
1 0

⎞
⎟⎟⎟⎟⎠ N =

⎛
⎜⎜⎝

1 0
0 1
2 −2

−2 3

⎞
⎟⎟⎠

After that we obtained the equality

A+ =

⎛
⎜⎜⎜⎝

1
13

0 2
13

1
13

1
13

19
312

1
48

21
208

17
208

25
624

5
156

−1
24

11
104

−1
104

23
312

3
104

1
16

−1
208

19
208

−7
208

⎞
⎟⎟⎟⎠

We can thus calculate

AA+ =

⎛
⎜⎜⎜⎜⎜⎝

1
6

1
12

1
4

1
4

1
12

1
12

7
24

−1
8

3
8

−5
24

1
4
−1
8

5
8

1
8

3
8

1
4

3
8

1
8

5
8

−1
8

1
12

−5
24

3
8

−1
8

7
24

⎞
⎟⎟⎟⎟⎟⎠

and verify that AA+ coincides, as expected by property (5), with the matrix
M (M trM)−1M tr.

To close this section with a flourish let’s look at the problem of least squares
in a slightly different way. As the sages (and also the photographers) say,
changing your point of view can reveal totally new aspects of an object. Up
to now we have treated the problem of least squares from a geometric point
of view linking it to orthogonal projections on a subspace. Let’s see what the
purely algebraic point of view is.

Let’s suppose that we have a system of linear equations

Ax = b (∗)

Now observe that if A is invertible then A+ = A−1, by property (4). Thus,
A+b = A−1b is the solution of the system (∗). What if A is not invertible?
What can we say about the column vector A+b?

A fundamental observation is the following: to say that the system
has a solution is the same thing as saying that b is in the vector
subspace generated by the columns of A.

Another important observation is that substituting A+b for x on the left
side of the expression gives AA+b, i.e. the orthogonal projection of b on the
space generated by the columns of A.
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If the system has solutions then b is in the subspace generated by the
columns of A hence the orthogonal projection of b coincides with b. In other
words one has AA+b = b and hence A+b is a solution of the system.

In case the system does not have solutions the column vector AA+b is
the vector in the space generated by the columns of A that is closest to b.
We can thus conclude that if (∗) has no solutions then A+b is the best
approximation to a solution (which doesn’t exist)!

There is no solution but there almost is! It’s like life, in which not being
able to do better we have to be content with what we get.

if you cannot make real what’s ideal,
idealize what’s real
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Exercises

Exercise 1. Consider the following functions.

α : R3 −→ R3 defined by α(a b c) = (a b + 2c c− 1)
β : R3 −→ R3 defined by β(a b c) = (a b + 2c c− b)
γ : R3 −→ R3 defined by γ(a b c) = (a b + 2c bc)

(a) Decide which of these functions is linear.
(b) Let A = ME

α(E). Prove, by finding an example, that A does not deter-
mine α.

Exercise 2. Consider the linear function ϕ : R3 −→ R2 defined by
ϕ(a b c) = (a + b b + 2c).

(a) Find a non-zero vector v ∈ R3 such that ϕ(v) = 0.
(b) Verify that the 3-tuple F = (f1 f2 f3) with f1 = (1 0 1), f2 =(0 1 −1),

f3 = (3 3 −5) is a basis for R3 and that the 2-tuple G = (g1 g2) with
g1 = (2 1), g2 = (1 −5) is a basis for R2.

(c) Calculate MG
ϕ(F ).

Exercise 3. Consider the linear function ϕ : R3 −→ R3 defined by
ϕ(a b c) = (2a− 3b− c b + 2c 2a− 4b− 3c).

(a) Find a basis for Im(ϕ).
(b) Calculate dim(Im(ϕ)).
(c) Find a basis for Ker(ϕ).
(d) Calculate dim(Ker(ϕ)).

@ Exercise 4. Consider the linear function ϕ : R7 −→ R5 defined by
ϕ(a1 a2 a3 a4 a5 a6 a7) = (a1−a6 a2−a7 a1−a4−a5+a6 a7 a3−a4).

(a) Find a basis for Im(ϕ).
(b) Calculate dim(Im(ϕ)).
(c) Find a basis for Ker(ϕ).
(d) Calculate dim(Ker(ϕ)).

Exercise 5. Consider the matrix

A =

⎛
⎜⎜⎜⎜⎝
−4 −1

0 −1
1 −1
1 −1
3 −1

⎞
⎟⎟⎟⎟⎠ ∈Mat5 2(R)

and calculate the projection onto A (i.e. onto the space spanned by the
columns of A).
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Exercise 6. Let A = (2 1 − 2) ∈Mat1,3(R).

(a) Calculate A+.
(b) Calculate (Atr)+.

Exercise 7. Let A = (a1 a2 . . . an) ∈ Mat1,n(R). Put c =
∑n

i=1 a2
i

and suppose that c �= 0. Prove that A+ = 1
c
Atr.

Exercise 8. Let n be a natural number and let u be a unit vector of Rn.
Let Au = ME

u (ME
u )tr.

(a) Verify that rk(Au) = 1 for u = 1√
3
(1, 1, 1) and for u = 1√

2
(1, 0, 1).

(b) Prove that rk(Au) = 1 for every unit vector u.
(c) In case n = 3 give a geometric interpretation of (b), using projections.

Exercise 9. Let n, r be natural numbers. Set I equal to the identity
matrix of type n, and let Q ∈ Matn,r(R) be an orthonormal matrix. Fur-
thermore suppose that A = I − 2QQtr. Prove the following assertions.

(a) The matrix A is symmetric.
(b) The matrix A is orthogonal.
(c) The matrix A satisfies, A2 = I .

Exercise 10. Consider the vector v = (3, 1, 3, 3) ∈ R4, the matrix

A =

⎛
⎜⎜⎝

1 1
3 −1
1 1
1 1

⎞
⎟⎟⎠ ∈Mat4,2(R)

and let V be the vector subspace of R4 generated by the columns of A.

(a) Prove that v ∈ V .
(b) Describe the set E of those vectors w having the following property: v

is the vector in V having minimum distance from w.

Exercise 11. Let

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−4 2
0 0
2 −1
6 −3

12 −6
0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
∈Mat6,2(R)

(a) Set s = rk(A), and calculate two MN tr decompositions of A with
matrices M, N ∈Mat6,s(R) and rk(M) = rk(N) = s.

(b) Calculate A+ in two ways, corresponding to the two decompositions
you found above.
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Exercise 12. This is a theoretical exercise.

(a) Let M ∈ Matr,1(R) and let N ∈ Mat1,r(R). Prove that rk(MN) ≤ 1.
(b) Let A,B ∈Mat2(R). Prove that there exist matrices C1, C2, C3, C4 ∈

Mat2(R) (of rank at most 1) for which we have the equality AB =
C1 + C2 + C3 + C4.

(c) Deduce that if A ∈ Mat2(R) is orthonormal then AAtr is the sum of
four projections of rank one.

@ Exercise 13. Consider the matrix A of Example 7.3.3 and verify prop-
erties c) and d), i.e. AA+A = A and A+AA+ = A+.

@ Exercise 14. Consider Exercise 15 in Chapter 6.

(a) Using the pseudoinverse of A find a solution to Ax = b where

b = (−62, 23, 163, 6,−106,−135)tr

(b) Using the pseudoinverse of A find an approximate solution of Ax = b
where b = (−62.01, 22.98, 163, 6,−106,−135)tr.

@ Exercise 15. Let A be the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−12 −5 −16 2 1 −14
11 −7 −6 0 1 7
1 8 42 −6 −2 3
1 −20 −23 1 3 −10
1 −23 −49 5 4 −10
1 11 −14 4 −1 9

⎞
⎟⎟⎟⎟⎟⎟⎠
∈Mat6(R)

(a) Find a basis for the vector subspace V of R6 generated by the columns
of A.

(b) Calculate the pseudoinverse of A.
(c) Calculate the projection onto V in two different ways.
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Endomorphisms and Diagonalization

the second thing I want to say
is that I forgot the first thing I wanted to say

(from the volume I Don’t Remember the Title

by an unknown author)

In this chapter we will study a central topic in the theory of matrices. We
have already seen (and I hope we haven’t forgotten) that matrices serve as
containers of numerical information, for example as the fundamental parts
of linear systems and as an essential mathematical tool for their solution.
We’ve multiplied them, we’ve calculated their inverses (when they exist) and
we have decomposed them into the LU decomposition. Then we began to
appreciate them as geometric tools, in the sense that we have associated
them to vectors and systems of coordinates.

Later we used them to describe and study quadratic forms, to construct
orthonormal bases and to decompose them into the QR form. We’ve associ-
ated numerical invariants to them, for example the rank, and we saw they
were useful in the study of vector subspaces of the space of n-tuples. Finally
we used them extensively to study the problem of least squares.

But, to tell the truth, we have only fleetingly discussed one of the most
important uses of matrices. We touched on this important use in Section 7.1
where matrices were used to help describe linear transformations. The math-
ematics used in that context was that of vector spaces and their transforma-
tions, even if (in fact) we didn’t linger much on the technical subtleties.

In this, the final chapter of the book, we’ll go into more depth about
this last point and finally we will briefly see an extraordinary property of
symmetric matrices with real entries. To put this last into perspective recall
that every symmetric matrix is congruent to a diagonal matrix; this fact
permitted us to find a basis so that the quadratic form associated with the
symmetric matrix could be expressed (with respect to that basis) without
any mixed terms.

Robbiano L.: Linear Algebra for everyone
c© Springer-Verlag Italia 2011
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Recall (see Section 5.2) that the relation of congruence is defined by the equa-
tion B = P tr A P with P invertible. You may also recall that we emphasized
the extraordinary capacity of matrices to adapt to very different situations.
Because of this, it will probably not surprise you that we still have a few
more surprises about matrices in store for you. In this chapter we will reveal
them to you but first let’s start by getting some idea of what I have in mind.

We already observed, at the end of the Section 7.1, that if ϕ : Rc −→ Rr

is a linear transformation, we have the formula

MG
ϕ(S) = MG

ϕ(F ) MF
S

It could happen that c = r. In that case, all the matrices in the game are
square and F and G are bases of the same space. Thus, it makes sense to
consider both MG

ϕ(G) and MF
ϕ(F ). Are they related in any way? We’ll see in

a bit that they are and that the relation is not very different from that of
congruence, even if the point of departure is completely different. In fact, the
point of this chapter is to study this relationship, called similarity, and the
chapter will conclude by showing that any real symmetric matrix is similar
to a diagonal matrix. This result, as you will see, is similar to what we did
for the relation of congruence, but the work needed to arrive at this result is
much greater.

In fact, lots of matrices are similar to diagonal matrices. All we need to
do is proceed in the opposite direction, i.e. take a diagonal matrix Δ, an
invertible matrix P of the same type and construct the matrix B = P−1Δ P .
A natural question to ask immediately is, what importance is there to the
fact that B decomposes as B = P−1Δ P with Δ diagonal. In order to begin
to respond to this question, and also to motivate the reader who wants to
understand this chapter (which is a bit more difficult than usual) let’s perform
an experiment.

Suppose that B is a square matrix of type 50 and suppose further that
we want to calculate B100. No problem, we begin by multiplying B with B
and then multiply the result by B again, and so for 99 times. Each time
we multiply by B the number of operations to do is on the order of 503

3
, as

we saw in Section 2.3. So, the total number of operations to do is, on the
order of, 99 ∗ 503

3
, i.e. around 4 million calculations. If, instead, Δ were a

diagonal matrix of type 50, in order to calculate Δ100 it would be enough
to raise each of the fifty diagonal element to the hundredth power, i.e. in
total less than 5000 operations. And now the plot is revealed! If we knew
a decomposition B = P−1Δ P , with Δ diagonal, then we would have the
formula B100 = P−1Δ100 P . Now notice that multiplying a square matrix of
type 50 by a diagonal matrix costs around 502 operations and multiplying
two matrices of type 50 costs around 503

3 . Adding this all together we see
that in this case we have a total of around 50,000 operations. That’s not a
bad saving!
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Some attentive readers will have noticed that we pulled a bit of a fast one
here in the sense that we are assuming that we know a decomposition of the
form B = P−1Δ P . In fact, it is clear that to get such a decomposition we
have to calculate it, if it exists, and that will cost as well. But, notice also
that once we have done that work we can use the formula we had above to
calculate any power of B.

So, we find ourselves in a situation analogous to the one we met when we
discussed the LU decomposition (see Section 3.5) where, once the decompo-
sition is calculated one can use it to solve, with less work, all the systems of
linear equations which you get by varying the column of the constant terms.

The importance of these facts is truly extraordinary and, for example, will
allow us to figure out how many rabbits there will be in a cage after a certain
period of time (see Section 8.4)! If you don’t really care much about rabbits,
don’t worry, there are plenty of other applications. Unfortunately, like most
things in life, the grand conquests require a great deal of work. I suggest that
the reader pay close attention to what follows.

8.1 An Example of a Plane Linear Transformation

Let’s do a little numerical experiment. Consider the linear transformation
ϕ : R2 −→ R2 such that ϕ(e1) = (5

4 ,
√

3
4 ), ϕ(e2) = (

√
3

4 , 7
4 ). One has

ME
ϕ(E) =

(
5
4

√
3

4√
3

4
7
4

)
=

1
4

(
5

√
3√

3 7

)

Given that E is a basis for R2, from what we saw in Section 7.1 the
matrix ME

ϕ(E) uniquely defines ϕ. Let v1 = (
√

3,−1), v2 = (1,
√

3) and
let F = (v1, v2). We see that F is a basis for R2 and further that F has
a noteworthy property. In fact

ϕ(v1) =
1
4
(5
√

3−
√

3,
√

3
√

3− 7) = (
√

3,−1) = v1

ϕ(v2) =
1
4
(5 +

√
3
√

3,
√

3 + 7
√

3) = (2, 2
√

3) = 2v2

Summing up we see that we have found a basis of two vectors each of whose
transform, by ϕ, has not changed direction. In fact, the vector v1 is left fixed.
If we represent this endomorphism ϕ using the basis F , i.e. if we write the
matrix MF

ϕ(F ), we get

MF
ϕ(F ) =

(
1 0
0 2

)
which is a diagonal matrix. This fact allows us to understand the geometric
nature of the function ϕ and to describe it in the following way. Make a change
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of coordinates using F as the new basis (notice that F is orthogonal even if
it is not orthonormal). With respect to the new set of axes given by F we
observe that ϕ leaves unchanged the vectors of the new x′-axis and doubles
the length of the vectors in the new y′-axis. In other words the function ϕ
is a dilation along the direction of the new y′-axis, i.e. along the direction of
the vector v2.

Notice that we can also modify F in order to get an orthonormal basis F ′

by replacing v1 and v2 by their normalizations v′1, v′2. With respect to this
new orthonormal basis F ′ the description of ϕ can be made with the same
matrix, inasmuch as we have the relation

MF
ϕ(F ) = MF ′

ϕ(F ′) =
(

1 0
0 2

)

Given the nature of the construction, ME
F ′ is an orthonormal matrix and

thus, by what was said in Section 6.2 the new coordinate system is obtained
by a rotation of the old axes through some angle.

The new basis F ′ is a privileged basis and well adapted to reveal the true
nature of the function ϕ. True enough, but where did the vectors v1 and v2

come from? Is there a way to calculate them, assuming that they exist no
matter what the matrix ME

ϕ(E) is? We notice that the real substance of the
discussion above was that the vectors v1 and v2 generate privileged axes for ϕ,
thus our study should focus on the existence of lines which are special for ϕ.
That is precisely what we will do in the next section.

8.2 Eigenvalues, Eigenvectors, Eigenspaces and
Similarity

In this section we will introduce some rather complex mathematical concepts
(the reason for the emphasis on the word above is clear to the specialists).
For now, and also to complete the example in the previous section, let’s make
the following observation. Let ϕ : Rn −→ Rn be a linear transformation
(mathematicians often call them endomorphisms of Rn). We can say that
a basis F of Rn is special for ϕ if F is formed of vectors v1, . . . , vn with the
property that ϕ(vi) is a multiple of vi for each i = 1, . . . , n. If ϕ(vi) = λivi

for each i = 1, . . . , n then we have

MF
ϕ(F ) =

⎛
⎜⎜⎝

λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

...
0 0 . . . λn

⎞
⎟⎟⎠

a diagonal matrix. In order to find such a special basis the problem essentially
becomes that of finding non-zero vectors v and real numbers λ such that
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ϕ(v) = λv. Such a number λ is called an eigenvalue of the endomorphism ϕ
and the non-zero vector v is called an eigenvector of λ. All the vectors v
for which ϕ(v) = λv form a vector subspace of Rn, call the eigenspace of λ
(eigen is German for same).

Let’s stop for a moment and pick up on a discussion which we briefly
mentioned in the introduction to this chapter, when we asked ourselves what
was the relationship between the two matrices MG

ϕ(G), MF
ϕ(F ). Let’s suppose

that we have two bases F , G of Rn (more generally of any vector space) and
an endomorphism ϕ : Rn −→ Rn. We can thus form both MG

ϕ(G) and MF
ϕ(F )

and it is not difficult to see the relationship between them: it’s enough to
apply rule (6) at the end of Section 7.1 and obtain MG

ϕ(G) = MG
ϕ(F )M

F
G . But

we also have MG
ϕ(F ) = MG

F MF
ϕ(F ) by rule (e) of base change (see Section 4.8).

So, in conclusion we have

MG
ϕ(G) = MG

F MF
ϕ(F ) MF

G (1)

Recall, from Section 4.7, that we have MG
F = (MF

G )−1 and we now finally
have the full picture on the relationship between MG

ϕ(G) and MF
ϕ(F ). The two

matrices are linked by a relation of the type

B = P−1A P (2)

that one calls the relation of similarity. Whenever A and B are two ma-
trices for which formula (2) holds we say that B is similar to A. A closer
look at this relationship shows that it is an equivalence relation, i.e. that A is
similar to A, that if A is similar to B then also B is similar to A and finally
that if A is similar to B and B is similar to C then A is similar to C.

One should say to the reader that these last comments are the sort of thing
that mathematicians love to prove. In this case, however, the proofs are so
easy that the readers should have no difficulty making them up.

But the interesting question is: what is the connection to eigenvalues and
eigenvectors? We begin with a vitally important observation. Given a square
matrix A of type n, we can think of the matrix as the matrix of an endo-
morphism ϕ. It’s enough to define the endomorphism ϕ : Rn −→ Rn using
the formula ME

ϕ(E) = A. This observation allows us to immediately speak
of eigenvalues and eigenvectors not only of endomorphism but also of ma-
trices. Now, changing the basis of Rn doesn’t change the endomorphism but
the matrix which represents the endomorphism does change according to
formula (1) and hence gives a relation of type (2). As a consequence, associ-
ating eigenvalues and eigenvectors to matrices in the way we said above can
only be justified if we can prove the following basic result, which is in fact
true.

Similar matrices have the same eigenvalues and the same eigen-
vectors.

To arrive at an understanding of this fact we take two separate roads. The
first uses some indirect reasoning, as follows. If A is a square matrix, we can
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put A = ME
ϕ(E), and in such a way define an endomorphism ϕ of Rn as we

did above. If B is similar to A then B = MF
ϕ(F ) where F is another basis

of Rn. Inasmuch as eigenvalues and eigenvectors are things that are intrinsic
to ϕ and not to how ϕ is represented, we can conclude that similar matrices
must have the same eigenvalues and eigenvectors.

The second approach confronts the question straight on. Using this ap-
proach we will obtain an even more important result. We proceed as follows.
Given a square matrix A of type n consider the matrix xI − A where I is
the identity matrix of type n. The characteristic polynomial of A is the
polynomial pA(x) = det(xI − A). A moments reflection makes it clear that
this is a polynomial in x of degree n. It is not a linear object, but linear
algebra has a great need for this object and cannot do without it. Why is
that? If λ is an eigenvalue of a given linear transformation ϕ : Rn −→ Rn and
we call A = ME

ϕ(E), then we know that λ ∈ R and that there is a non-zero
vector v such that ϕ(v) = λv; thus we deduce that ME

v is a non-zero solution
of the system of homogeneous linear equations (λI −A)x = 0. But, a homo-
geneous system of linear equations with as many equations as unknowns has
a non-trivial solution if and only if the determinant of the coefficient matrix
is zero.

It follows from this that the equality pA(λ) = 0 with λ ∈ R is a necessary
and sufficient condition in order for λ to be an eigenvalue of ϕ.

If B is a matrix which is similar to A then there is an invertible matrix P
such that B = P−1AP (see formula (2)). It follows that

pB(x) = det(xI − B) = det(xI − P−1AP ) =
det(P−1xIP − P−1AP ) = det(P−1(xI −A)P ) and

det(P−1(xI − A)P ) = det(P−1) det(xI −A) det(P ) =
det(xI − A) = pA(x)

Similar matrices have the same characteristic polynomial.
We have thus seen that the characteristic polynomial is, as mathematicians
say, an invariant for similarity. This permits us to speak of the character-
istic polynomial of ϕ. We have, in fact, that pϕ(x) = pA(x), where A is
any matrix which represents ϕ.

The eigenvalues of ϕ (and of any matrix which represents it)
are the real roots of the characteristic polynomial of ϕ (and of
any matrix which represents it).

Having arrived at this point I can imagine that the reader might be a bit
perplexed. One clearly sees that the reasoning in this chapter has been more
difficult than that of the previous chapters. Perhaps at this point the book is
not really for everyone? Don’t despair, we are almost at the end and a small
push is all that is needed to arrive at some really noteworthy conclusions. We
still have to learn a couple of mathematical facts. The first is the following:
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If for each eigenspace we select a basis and put all these bases in
a single tuple of vectors we have a tuple of linearly independent
vectors.

The second is the following:
The dimension of each eigenspace is less than or equal to the
multiplicity of the root of the characteristic polynomial corre-
sponding to that eigenspace.

These facts have some very important consequences but, fearing that the
reader is beginning to lose patience, I will simply close this section with an
example. The next section will show other classes of examples and will give
ample witness to the versatility with which these mathematical facts can be
used.

Example 8.2.1. Let’s consider the following matrix A =
(
7 −6
8 −7

)
. Its charac-

teristic polynomial is

pA(x) = det
(

x− 7 6
−8 x + 7

)
= x2 − 1

The eigenvalues are thus 1,−1. We can now calculate the corresponding
eigenspaces V1, V−1. In order to calculate V1 we have to find all the vec-
tors v such that ϕ(v) = v. But, what is the ϕ we are talking about? We
thought of A as ME

ϕ(E) and therefore if v = (x1, x2)tr, then the vector v

for which ϕ(v) = v are those for which the coordinates, with respect to the
canonical basis, are the solutions to the linear system

{
−6x1 + 6x2 = 0
−8x1 + 8x2 = 0

A basis for V1 is, for example, the vector u1 = (1, 1). As far as V−1 is con-
cerned, the vectors v for which ϕ(v) = −v are precisely those vectors whose
coordinates, with respect to the canonical basis, are the solutions to the sys-
tem of linear equations {

−8x1 + 6x2 = 0
−8x1 + 8x2 = 0

So, a basis for V1 is, for example, the vector u1 = (3, 4). The conclusion of
all this discussion is that we can form the matrix P−1 =

(
1 3
1 4

)
, and then we

have P =
(

4 −3
−1 1

)
, and, setting Δ =

(
1 0
0 −1

)
, we get the decomposition A =

P−1ΔP , i.e. (
7 −6
8 −7

)
=

(
1 3
1 4

) (
1 0
0 −1

)(
4 −3
−1 1

)
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8.3 Powers of Matrices

The power of matrices or the powers of matrices? The emphasis has always
been on the first interpretation, but in this section we will be talking about
the second, as we indicated in the introduction to this chapter. Without any
delay let’s look at an example.

Example 8.3.1. Let’s consider the following matrix

A =

⎛
⎝ 2 0 −3

1 1 −5
0 0 −1

⎞
⎠

and let’s suppose that we want to raise it to a very high power, for example,
50,000. As we observed in the introduction, it is quite costly to calculate
A50,000, but in this case we can take advantage of eigenvalues. How? The
characteristic polynomial of A is

pA(x) = det(xI − A) = x3 − 2x2 − x + 2 = (x + 1)(x− 1)(x− 2)

There are three distinct eigenvalues −1, 1, 2. Three corresponding eigenvec-
tors are v1 = (1, 2, 1), v2 = (0, 1, 0), v3 = (1, 1, 0).

Set

P−1 =

⎛
⎝ 1 0 1

2 1 1
1 0 0

⎞
⎠ Δ =

⎛
⎝−1 0 0

0 1 0
0 0 2

⎞
⎠

and we get

P =

⎛
⎝ 0 0 1
−1 1 −1

1 0 −1

⎞
⎠ A = P−1ΔP

As we saw in the introduction, we have the equality

AN = P−1ΔNP

Calculating ΔN is an easy operation, in fact we have

ΔN =

⎛
⎝ (−1)N 0 0

0 1N 1
0 0 2N

⎞
⎠

The upshot of all of this is the following formula

⎛
⎝2 0 −3

1 1 −5
0 0 −1

⎞
⎠

N

=

⎛
⎝1 0 1

2 1 1
1 0 0

⎞
⎠

⎛
⎝ (−1)N 0 0

0 1N 1
0 0 2N

⎞
⎠

⎛
⎝ 0 0 1
−1 1 −1

1 0 −1

⎞
⎠
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Thus, if N is an even number we have

⎛
⎝2 0 −3

1 1 −5
0 0 −1

⎞
⎠

N

=

⎛
⎝ 2N 0 −2N + 1

2N − 1 1 −2N + 1
0 0 1

⎞
⎠

If, instead, N is an odd number we have

⎛
⎝2 0 −3

1 1 −5
0 0 −1

⎞
⎠

N

=

⎛
⎝ 2N 0 −2N + 1

2N − 1 1 −2N − 3
0 0 −1

⎞
⎠

At this point the reader might be curious to verify if, indeed, calculating AN

with the obvious method, i.e. AAAAAA · · ·A with N − 1 products, is really
trumped by the method we talked about using the diagonalization of A. Natu-
rally, to really appreciate the difference in this contest we have to choose N big
enough. How big? I prefer to leave that choice to the discretion of the reader.

8.4 The Rabbits of Fibonacci

moreover,
those who truly wish to acquire some skill in this science,

must apply themselves continually
exercising with it, practically on a daily basis

(Leonardo da Pisa, called Fibonacci)

As G.K. Chesterton once observed, with persistence even the snail reached
Noah’s Ark. Thus, even though the quote above was written in 1202 in the
Liber Abaci of Fibonacci, it is still good advice today.

Leonardo da Pisa, also called Bigollo (the ne’er do well), who is also now
known by the name of filius Bonacci (son of Bonacci) or Fibonacci, was a
great mathematician who lived at the end of the twelfth and the beginning
of the thirteenth centuries.

Ne’er do well and mathematician! Yet he is so important that even today
his book, Liber Abaci, influences modern science. For example, we owe to
him the use of the symbol 0, which he imported to the West from the great
Indo-Arab tradition. Once, during a tourney, someone posed the following
question to him.

In a cage, which has no opening to the outside world, there are a pair
of rabbits. Let’s suppose that rabbits give birth every month, starting
the second month of their lives. Suppose also that every time they give
birth they have one male and one female offspring. How many pairs
of rabbits will there be in the cage after one year?
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Clearly this does not describe the behavior of real rabbits. But, one knows that
mathematicians (even a ne’er do well) like to extract simplified mathematical
models from real life situations. Perhaps after solving this problem one could
complicate the model and have Fibonacci’s rabbits behave more like real
rabbits (who give birth in a much less regular way, have a certain mortality,
don’t live in ideal cages. . . ).

Let’s consider how to pose the problem. At the beginning, i.e. after zero
months, there is one pair of rabbits (which we will call C) in the cage. After
one month there will still be the same pair of rabbits. However, after two
months there is the pair C plus the newly born offspring, which we will call
F, hence now there are two pairs. After three months there is the pair C, the
pair F and the new offspring of C, which we’ll call G. After four months we
have: the pair C, the pair F, the pair G, another new pair which are offspring
of C, and a new pair which are the offspring of F, for a grand total of 5 pairs.
Let’s try to visualize this with the following table

months 0 1 2 3 4 · · ·
couples 1 1 2 3 5 · · ·

Now we have to figure out how to go on, but that problem is easily resolved.
In fact, having made a thought experiment, it should be clear that after n
months there are: the number of pairs there were after n − 1 months, plus
the offspring of the pairs there were after n − 2 months, since every pair of
rabbits gives (as offspring) precisely one new pair. If we call, for simplicity,
C(n), the number of pairs there are after n months, one has the following
formula

C(n) = C(n− 1) + C(n− 2) with C(1) = C(0) = 1 (1)

This type of formula is called a linear recurrence where the initial data are
C(1) = C(0) = 1. Thus, it is easy to extend the table above.

months 0 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
couples 1 1 2 3 5 8 13 21 34 55 89 144 233 · · ·
Thus, Fibonacci’s problem (calculate C(12)) is now done. After a year there
will be 233 pairs in the cage. The reader will have noticed that to calcu-
late C(12) we had to first calculate all the preceding values of C(n) i.e.
C(0), C(1), . . . , C(11). Now, after several centuries, we have become more
demanding and we would like to have a more direct formula, i.e. a formula
that allows us to calculate c(12) without calculating all the preceding values.

In a bit we will see that this is possible using eigenvalues. So, the reader
should now pay close attention because we are arriving at the most important
point of this example. The first thing to do is to find a matrix! Since, up to this
moment no matrix has appeared in this problem it is not at all apparent how
we can use the notion of an eigenvalue. But, let’s look again at formula (1).
It can also be described in the following way

C(n) = C(n− 1) + C(n− 2)
C(n− 1) = C(n− 1) with C(1) = C(0) = 1 (2)
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In other words one has(
C(n)

C(n− 1)

)
=

(
1 1
1 0

) (
C(n− 1)
C(n− 2)

)
with C(1) = C(0) = 1 (3)

As often happens in mathematics, the simple fact of adding a trivial equation,
i.e. C(n− 1) = C(n− 1), to the mix has completely changed our view of the
problem and opened up the possibility of viewing it in a different way. Let’s
see how. If we apply formula (3) to the case n = 2 we get(

C(2)
C(1)

)
=

(
1 1
1 0

) (
C(1)
C(0)

)
(4)

If we apply formula (3) to the case n = 3 we get(
C(3)
C(2)

)
=

(
1 1
1 0

) (
C(2)
C(1)

)

Using (4) one gets

(
C(3)
C(2)

)
=

(
1 1
1 0

)(
1 1
1 0

)(
C(1)
C(0)

)
=

(
1 1
1 0

)2 (
C(1)
C(0)

)
(5)

At this point it should be clear that, continuing in the same way we obtain(
C(n)

C(n− 1)

)
=

(
1 1
1 0

)n−1 (
C(1)
C(0)

)
(6)

for every n ≥ 2. Notice that once again we are faced with a matrix raised
to a power. Let’s see now if we can calculate the eigenvalues of the matrix
A =

(
1 1
1 0

)
. It’s characteristic polynomial is

pA(x) = det(xI − A) = det
(

x− 1 −1
−1 x

)
= x2 − x− 1

The real roots of the characteristic polynomial, i.e. the eigenvalues of A, are

x1 =
1 +

√
5

2
, x2 =

1−
√

5
2

Now we can calculate the eigenspaces and, preceding as in Example 8.2.1, we
get

(
1 1
1 0

)
=

(
1+
√

5
2

1−
√

5
2

1 1

)(
1+
√

5
2

0

0 1−
√

5
2

) ⎛
⎝ 1√

5
−1+

√
5

2
√

5

−1√
5

1+
√

5
2
√

5

⎞
⎠ (7)

We have almost arrived at the central point. In the introduction to this
chapter and also in the preceding section we have seen that the n-th power
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of a diagonal matrix is easy to calculate (it’s enough to raise the diagonal
entries to the n-th power) and also that if A = P−1ΔP with Δ diagonal
then An = P−1ΔnP . Hence, from formulas (6), (7) and (3) we deduce

(
C(n)

C(n− 1)

)
=

(
1+
√

5
2

1−
√

5
2

1 1

)(
1+
√

5
2

0

0 1−
√

5
2

)n−1
⎛
⎝ 1√

5
−1+

√
5

2
√

5

−1√
5

1+
√

5
2
√

5

⎞
⎠(

1
1

)

Now, using the preceding formula one finds

C(n) =
1√
5

((1 +
√

5
2

)n+1

−
(1−

√
5

2

)n+1
)

(8)

We have finally arrived! Let’s verify, for example, that C(3) = 3. According
to formula (8) we have

C(3) = 1√
5

((
1+
√

5
2

)4

−
(

1−
√

5
2

)4
)

= 1√
5

((
1+4

√
5+6∗25+20

√
5+25

16

)
−

(
1−4

√
5+6∗25−20

√
5+25

16

))
= 1√

5
(48

√
5

16 ) = 3

8.5 Differential Systems

You’ve read that properly, we will be talking about systems of differential
equations. It’s true, even in analysis they use matrices! Let’s look at an ex-
ample right away.

Example 8.5.1. We begin by recalling that the differential equation

x′(t) = c x(t) (1)

where x(t) is a function of time t, and c is a constant, has as its solution

x(t) = x(0) ec t (2)

which takes into account the initial value x(0). What would happen if, in-
stead of having a scalar equation, we had a vector equation? Suppose we
have modeled a problem, for example the relationship between populations
of predators and prey, with the following system which makes very evident
the two quantities and their derivatives at certain times.{

x′1(t) = 2x1(t) − 3x2(t)
x′2(t) = x1(t) − 2x2(t)

(3)
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Let’s simplify the notation a bit by not always writing t.{
x′1 = 2x1 − 3x2

x′2 = x1 − 2x2
(4)

The idea is to read the system (4) as a matrix equation. It will be enough to
consider the column vector x = (x1, x2)tr, the matrix A =

(
2 −3
1 −2

)
and hence

to rewrite the system as
x′ = Ax (5)

Now, let’s try to diagonalize the matrix A. It’s characteristic polynomial is
det(xI − A) = x2 − 1 and thus A has eigenvalues 1,−1. Doing some simple
calculations we see that an eigenvector for the eigenvalue 1 is v1 = (3, 1),
while an eigenvector for the eigenvalue −1 is v2 = (1, 1). Using the usual
relations ME

ϕ(E) = ME
F MF

ϕ(F )M
F
E and putting Δ =

(
1 0
0 −1

)
, P = MF

E =( 1
2 − 1

2

− 1
2

3
2

)
, we have P−1 = ME

F =
(
3 1
1 1

)
and

A = P−1Δ P (6)

i.e. (
2 −3
1 −2

)
=

(
3 1
1 1

)(
1 0
0 −1

)( 1
2 −1

2

−1
2

3
2

)
(7)

Now comes the good idea. Substitute in equality (5) the expression for A
given in (6) and multiply on the left by P . We get

P x′ = Δ P x (8)

and setting
y = P x (9)

we obtain, because of the linearity of the derivative,

y′ = Px′ (10)

and hence (8) can be rewritten

y′ = Δy (11)

i.e. {
y′1 = y1

y′2 = −y2
(12)

All the work we have done up to this point allows us to transform the system
(4) into system (12). But, what is the advantage of doing that? The attentive
reader will certainly have noticed that in system (12) the variables are
separated and thus the two equations can be solved separately, as was done
for case (1). Thus we obtain (see (2)){

y1(t) = y1(0) et

y2(t) = y2(0) e−t (13)
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From (9) we have that y(0) = P x(0) and hence{
y1(0) = 1

2x1(0)− 1
2 x2(0)

y2(0) = −1
2
x1(0) + 3

2
x2(0)

(14)

From (9) we also conclude that x = P−1y and using (13) we obtain{
x1(t) = 3y1(0)et + y2(0)e−t

x2(t) = y1(0)et + y2(0)e−t (15)

To finish, it is enough to use (14).{
x1(t) = 3

(
1
2x1(0)− 1

2x2(0)
)
et+

(
− 1

2x1(0) + 3
2 x2(0)

)
e−t

x2(t) =
(

1
2x1(0)− 1

2x2(0)
)
et+

(
− 1

2x1(0) + 3
2x2(0)

)
e−t (16)

The easy verification that these functions actually satisfy the system (3) with
which we began, will convince the reader that the result is correct.

I cannot forego the opportunity to insist once more that matrices are one
of the most important tools in mathematics. At this stage of the game, the
reader has seen their enormous versatility and should have no doubt about
their value.

8.6 Diagonalizability of Real Symmetric Matrices

We have just about arrived at the most important result. But, once more
we need to make a small digression, this time of a type we haven’t seen in
the past. Let’s consider the following three polynomials F1(x) = x2 − 2x− 1,
F2(x) = x2 − x + 1 e F3(x) = x2 − 2x + 1. The first has two real distinct
roots 1 −

√
2, 1 +

√
2, while the second doesn’t have real roots (it has two

complex roots 1−
√

3 i
2 , 1+

√
3 i

2 ). The third is a square, in fact F3(x) = (x−1)2

and hence has only one real root, but mathematicians prefer (and they have
good reasons) to say that it has two coincident roots, or, better yet, it has
one root with multiplicity 2. In general, a polynomial with real coefficients
has complex roots that, counted with their multiplicity, are as many as the
degree of the polynomial. This fact is so important that it is called, with a
trumpet fanfare, the fundamental theorem of algebra. But, as we have
already noted with the polynomial F2, the polynomial may not have any real
roots.

We are just about ready to see a really great new theorem, but first we
would like to respond to a suspicion that surely some readers have posed
in their minds. Could it be true that all real square matrices are similar to
diagonal matrices, i.e. as one would say in the mathematical jargon, are they
all diagonalizable? The answer is a resounding no and we immediately give
an example.
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Example 8.6.1. Consider the matrix A =
(
1 1
0 1

)
. It’s characteristic polyno-

mial is the following

pA(x) = det(xI − A) = (x− 1)2

This matrix has only one eigenvalue λ1 = 1 with multiplicity equal to 2.
Let’s calculate the eigenspace V1. So, we have to find all the vectors v such
that ϕ(v) = v, where ϕ is the linear transformation on R2 into itself defined
by ME

ϕ(E) = A. Thus, we have to find the vectors v such that AME
v = ME

v

i.e. such that (A − I)ME
v = 0. In other words, we have to solve the linear

homogeneous system of equations{
x2 = 0
0 = 0 (1)

The general solution is (a, 0). A basis for Vi can be chosen to be the unit
vector (1, 0). We have arrived at a place beyond which we are unable to go,
in the sense that the eigenvectors are too few to be able to construct a basis
for R2 made up entirely of eigenvectors. The only possible conclusion is that
we have found an example of a matrix which is not diagonalizable.

Notice that the matrix in the preceding example is not symmetric and the
first noteworthy fact about diagonalization and symmetric matrices is the
following.

The characteristic polynomial of a real symmetric matrix has
all of its roots real.

This means that, if counted with their multiplicities, there are as many eigen-
values as the degree of the characteristic polynomial which, in turn, coincides
with the type of the matrix A. But, you might say that this was also true
for the characteristic polynomial of the previous example, and you would be
correct. But, there is (in reserve) another fundamentally important fact.

The eigenspaces corresponding to different eigenvalues of a sym-
metric matrix are pairwise orthogonal.

This implies that it is possible to find an orthonormal basis made en-
tirely of eigenvectors. Let’s see a proof of this fact.

Suppose that λ1, λ2 are two distinct eigenvalues and suppose that u
is a non-zero eigenvector of λ1, v a non-zero eigenvector of λ2. Put
x = ME

u , y = ME
v . Then one has

λ1(xtr y) = (λ1x)tr y = (Ax)tr y = xtr Atr y

= xtr Ay = xtr (Ay) = xtr (λ2y) = λ2(xtr y)

The equality λ1(xtr y) = λ2(xtr y) implies xtr y = 0 and, as a conse-
quence implies u · v = 0.
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You might say, even in the example above the property just discussed was
true, and you would be right, in fact, the eigenspace corresponding to the
eigenvalue 0 is the null space and thus the property just announced is trivially
true. But, in the end, the symmetric matrices deliver their final gift.

The eigenspaces corresponding to the eigenvalues of a symmet-
ric matrix have dimension equal to their multiplicity.

This property was not satisfied in the preceding example! The strong, and
surprising, consequence of all this is the following.

Real symmetric matrices are diagonalizable and the diagonal-
ization can be done with an orthonormal matrix. In other words
given a real symmetric matrix A ∈ Matn(R), there exists an or-
thonormal basis F of Rn and a diagonal matrix Δ such that

Δ = P−1A P (2)

with Δ diagonal and P = ME
F . The matrix Δ has, on its main

diagonal, the eigenvalues of A, each repeated as many times as
its multiplicity.

In order to be able to put this river of important mathematical facts into
perspective, let’s study (in detail) some examples.

Example 8.6.2. Let’s look at the symmetric matrix

A =

⎛
⎝ 1 1 0

1 −2 3
0 3 1

⎞
⎠

Consider the matrix

xI − A =

⎛
⎝x− 1 −1 0
−1 x + 2 −3

0 −3 x− 1

⎞
⎠

and its determinant which is the characteristic polynomial of A

pA(x) = det(xI −A) = x3 − 13x + 12 = (x− 3)(x− 1)(x + 4)

There are, as is easy to check, three distinct eigenvalues, λ1 = 3, λ2 = 1,
λ3 = −4. Let’s calculate the three corresponding eigenspaces, which we will
call V1, V2, V3. To calculate V1 we have to find all the vectors v such that
ϕ(v) = 3v. But, what’s the ϕ we are talking about? We mean the linear
transformation ϕ of R3 into itself, such that ME

ϕ(E) = A. So, we must find
the vectors v such that AME

v = 3ME
v i.e. such that (A−3I)ME

v = 0 or equiv-
alently (3I − A)ME

v = 0. In other words we have to solve the homogeneous
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system of linear equations⎧⎨
⎩

2x1 − x2 = 0
−x1 + 5x2 − 3x3 = 0

−3x2 + 2x3 = 0
(1)

One sees that the general solution to this system is (a, 2a, 3a). An or-
thonormal basis of V1 is thus given by the single vector of unit length,
f1 = 1√

14
(1, 2, 3).

Repeating the same sort of reasoning for V2 we see that we have to solve
the following homogeneous system of linear equations⎧⎨

⎩
−x2 = 0

−x1 + 3x2 − 3x3 = 0
−3x2 = 0

(2)

The general solution of this system is (3a, 0,−a). An orthonormal basis for
V2 is thus given by the single vector of unit length f2 = 1√

10
(3, 0,−1).

Repeating the same reasoning one more time for V3 we are faced with the
homogeneous system of linear equations⎧⎨

⎩
−5x1 − x2 = 0
−x1 − 2x2 − 3x3 = 0

−3x2 − 5x3 = 0
(3)

Here the general solution of the system is (a,−5a, 3a). An orthonormal
basis for V3 is thus given by the single vector of unit length which is
f3 = 1√

35
(1,−5, 3).

Let’s put together the orthonormal bases we found for V1, V2, V3 to get
the basis F = (f1, f2, f3) of R3. By the way it was constructed, we have

MF
ϕ(F ) =

⎛
⎝ 3 0 0

0 1 0
0 0 −4

⎞
⎠

The matrix

ME
F =

⎛
⎜⎝

1√
14

3√
10

1√
35

2√
14

0 −5√
35

3√
14

−1√
10

3√
35

⎞
⎟⎠

is orthonormal, hence the inverse MF
E is the transpose of MF

E . The formula
MF

ϕ(F ) = MF
E ME

ϕ(E) ME
F can be explicitly written down as

⎛
⎝ 3 0 0

0 1 0
0 0 −4

⎞
⎠ =

⎛
⎜⎜⎝

1√
14

2√
14

3√
14

3√
10

0 −1√
10

1√
35

−5√
35

3√
35

⎞
⎟⎟⎠

⎛
⎝ 1 1 0

1 −2 3
0 3 1

⎞
⎠

⎛
⎜⎝

1√
14

3√
10

1√
35

2√
14

0 −5√
35

3√
14

−1√
10

3√
35

⎞
⎟⎠
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We have obtained the diagonalization of A. Setting P = ME
F , and

Δ =

⎛
⎝ 3 0 0

0 1 0
0 0 −4

⎞
⎠

we have
Δ = P−1A P = P tr A P

Notice that not only are Δ and A similar but they are also congruent.

Example 8.6.3. Let A be the symmetric matrix

A =

⎛
⎝

9
10 − 1

5
1
2

− 1
5

3
5 1

1
2

1 − 3
2

⎞
⎠

Consider the matrix

xI −A =

⎛
⎜⎝

x− 9
10

1
5 −1

2
1
5 x− 3

5 −1
−1

2
−1 x + 3

2

⎞
⎟⎠

and its determinant, which is the characteristic polynomial of A,

pA(x) = det(xI − A) = x3 − 3x + 2 = (x− 1)2(x + 2)

We have thus found two distinct eigenvalues λ1 = 1, λ2 = −2, but notice
that λ1 has multiplicity 2.

Let’s calculate the corresponding eigenspaces, that we will call V1, V2. In
order to calculate V1 we have to find all the vectors v such that ϕ(v) = v. As
in the preceding example, ϕ is the linear transformation of R3 into itself for
which ME

ϕ(E) = A. Thus we have to find the vectors v such that AME
v = ME

v ,
i.e. such that (A− I)ME

v = 0 or equivalently (I −A)ME
v = 0. In other words

we have to solve the homogeneous system of linear equations⎧⎪⎨
⎪⎩

1
10 x1 + 1

5x2 − 1
2x3 = 0

1
5
x1 + 2

5
x2 − 1x3 = 0

−1
2 x1 − x2 + 5

2x3 = 0
(1)

The system is equivalent to its last equation and thus its general solution
is (a,−1

2
a + 5

2
b, b). A basis of V1 is thus given by the pair of vectors (v1, v2)

where v1 = (1,−1
2 , 0), v2 = (0, 5

2 , 1). If we want an orthonormal basis it will
be enough to use the Gram-Schmidt method. In this way we obtain the
new basis G = (g1, g2), where g1 = vers(v1), g2 = vers

(
v2 − (v2 · g1)g1

)
.

Thus we have g1 = 1√
5
(2,−1, 0) and g2 = vers

(
(0, 5

2 , 1) +
√

5
2

1√
5
(2,−1, 0)

)
=

vers(1, 2, 1) and hence g2 = 1√
6
(1, 2, 1).
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Repeating the same reasoning for V2 we find that we have to solve the
system of homogeneous linear equations⎧⎪⎨

⎪⎩
−29

10 x1 + 1
5x2 − 1

2x3 = 0
1
5
x1 + 13

5
x2 − x3 = 0

−1
2 x1 − x2 − 1

2x3 = 0
(2)

The general solution for the system is (−a,−2a, 5a). An orthonormal basis
of V2 is given by the single vector of unit length g3 = 1√

30
(−1,−2, 5).

Putting together the orthonormal bases of both V1 and V2 already found,
we obtain the basis F = (g1, g2, g3) of R3. By the way this basis was con-
structed we have

MF
ϕ(F ) =

⎛
⎝ 1 0 0

0 1 0
0 0 −2

⎞
⎠

The matrix

ME
F =

⎛
⎜⎜⎝

2√
5
− 1√

6
1√
30

− 1√
5

2√
6
− 2√

30

0 1√
6

5√
30

⎞
⎟⎟⎠

is orthonormal and hence the inverse of MF
E coincides with the transpose of

ME
F . The formula MF

ϕ(F ) = MF
E ME

ϕ(E) ME
F can be written explicitly as

⎛
⎝ 1 0 0

0 1 0
0 0 − 2

⎞
⎠=

⎛
⎜⎜⎝

2√
5

− 1√
5

0

− 1√
6

2√
6

1√
6

1√
30

− 2√
30

5√
30

⎞
⎟⎟⎠
⎛
⎝

9
10 − 1

5
1
2

− 1
5

3
5

1
1
2

1 − 3
2

⎞
⎠
⎛
⎜⎝

2√
5

− 1√
6

1√
30

− 1√
5

2√
6

− 2√
30

0 1√
6

5√
30

⎞
⎟⎠

We have thus obtained the diagonalization of A. Writing P = ME
F , and

Δ =

⎛
⎝ 1 0 0

0 1 0
0 0 −2

⎞
⎠

we have Δ = P−1A P = P tr A P .

We finish with an interesting observation. If A is a real symmetric matrix
then we have seen that there exists a diagonal matrix Δ and an orthonormal
matrix P such that Δ = P−1AP . The matrix Δ has the eigenvalues of A on its
main diagonal. The observation (already made at the end of Example 8.6.2)
is that inasmuch as P is orthonormal, and consequently P−1 = P tr, A and
Δ are not only similar they are also congruent. As a consequence of this
observation we have the following fact.
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If A is a real symmetric positive semidefinite matrix then its
eigenvalues are all non-negative. If, moreover, A is positive def-
inite then its eigenvalues are all positive.

As you might well imagine, mathematicians have studied the idea of diago-
nalization a great deal and made many important discoveries about it. But,
having come this far the road ahead is much less accessible and to go ahead
is no longer for everyone. Nevertheless, for the readers who have had their
thirst for the subject only partially sated by what they have already learned,
my advice, obviously, is: don’t stop here!

e
� a se t e s a �

e

(from Palindromes of (Lo)Renzo

from Lorenzo)
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Exercises

Exercise 1. For every real number ϕ let Aϕ be the following matrix

Aϕ =

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)

(a) Prove that for every ϕ ∈ R there exists ϑ ∈ R such that (Aϕ)−1 = Aϑ.
(b) Describe all the values of ϕ ∈ R for which the matrix Aϕ is diagonal-

izable.
(c) Give geometric motivations for the answers to the preceding questions.

Exercise 2. How many, and what are, the orthogonal and diagonalizable
matrices in Mat2(R)?

Exercise 3. Consider the following matrices.

A1 =

(
1 0
0 1

)
A2 =

(
1 0
1 1

)
A3 =

(
1 0
1 2

)
A4 =

(
2 0
1 1

)
A5 =

(
2 0
0 1

)

(a) Explain which of these are diagonalizable.
(b) Find the pairs of matrices, among these, that are similar.

Exercise 4. Discuss the following theoretical questions.

(a) What are the eigenvalues of an upper triangular matrix?
(b) What are the eigenvalues of a lower triangular matrix?
(c) Prove that if λ is an eigenvalue of the matrix A and N is a natural

number then λN is an eigenvalue of the matrix AN .

Exercise 5. Solve the following system of differential equations{
x′1(t) = x1(t)− 3x2(t)
x′2(t) = −3x1(t) + 10x2(t)

with initial conditions x1(0) = 2, x2(0) = −4.

Exercise 6. Consider the matrix

A =

⎛
⎝ 0 0 −2

1 2 1
1 0 3

⎞
⎠

(a) Calculate det(A) and verify that the matrix A is invertible.
(b) Deduce that 0 is not an eigenvalue of A.
(c) Diagonalize, if possible, A.
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@ Exercise 7. Diagonalize the following matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

55010
32097

3907
64194

58286
32097

− 42489
21398

61403
64194

− 6067
64194

− 65587
32097

128036
32097

809651
32097

− 218715
10699

448180
32097

10561
32097

− 3821
32097 − 25687

64194 − 71447
32097

10299
21398 − 110219

64194
21601
64194

− 8672
32097 − 11408

32097 − 83864
32097

16268
10699 − 35260

32097
2336
32097

5507
10699

− 5014
10699

− 51355
10699

57171
10699

− 13254
10699

− 6221
10699

− 2818
32097

− 34975
32097

− 181282
32097

48033
10699

− 145679
32097

7747
32097

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

@ Exercise 8. Consider the matrix

A =

⎛
⎜⎜⎜⎝

4
5

3
2
− 12

5
−12

2 3 2 4
23
5 − 1

2
19
5 14

− 7
5 − 1

2 − 1
5 0

⎞
⎟⎟⎟⎠

(a) Calculate A10000 directly.
(b) Verify that the eigenvalues of A are 1, −2, 3, 4.
(c) Write A in the form, A = P−1ΔP with Δ diagonal.
(d) Use this formula to recalculate A10000 and compare how long this cal-

culation took with the time it took to make the direct calculation in
(a).

@ Exercise 9. Let F (x) = x5 − 5x3 + 3x − 7. Notice that F (x) has
degree 5 and that the list of the coefficients of the terms of degree less
than 5, starting from degree 0, is [−7, 3, 0, −5, 0]. Consider the list of
the opposites, i.e. the list [7, −3, 0, 5, 0] and use these to construct the
following matrix

A =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 7
1 0 0 0 −3
0 1 0 0 0
0 0 1 0 5
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠

(a) Verify that the characteristic polynomial of A is F (x).
(b) Generalize the construction of A as F (x) varies and verify the same

property for the following polynomials

(1) F (x) = x15 − 1
(2) F (x) = x12 − x11 − x10 + 2x7

(3) F (x) = x3 − 1
2x2 + 3

7x + 1
12

Exercise 10. Let I be the identity matrix of type 3.

(a) Prove that if A is similar to I , then A = I .
(b) Is the same statement true if we substitute any positive natural number

for 3?
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Exercise 11. Consider the family of matrices At ∈Mat2(R), where t ∈ R
and

At =

(
1 t
2 1

)
Determine the values of t ∈ R for which At is not diagonalizable.

Exercise 12. Let A B P be square matrices of the same type and
suppose that P is invertible and that A and B are diagonalizable using P .
Discuss the following theoretical questions.

(a) Is it true that A + B is diagonalizable?
(b) Is it true that AB is diagonalizable?

Exercise 13. Consider A ∈ Matn(R). Discuss the following theoretical
questions.

(a) Is it true that if λ is an eigenvalue of A, then λ2 is an eigenvalue of
A2?

(b) Let λ ∈ R. If the sum of the elements in every row of A is λ is it true
that λ is an eigenvalue of A?

@ Exercise 14. Consider the sequence of whole numbers f(n), where we
suppose that we know the initial values f(0) f(1) f(2) and also that we
know that the numbers satisfy the recurrence relation

f(n) = 2f(n− 1) + 5f(n− 2) − 6f(n− 3)

(a) Calculate f(3) f(4) f (10) in terms of f(0) f(1) f(2).
(b) Imitating the example of Fibonacci’s rabbits, construct the matrix A

associated to the given recurrence relation and calculate the eigenval-
ues of that matrix.

(c) Calculate a decomposition A = P−1Δ P with Δ diagonal.
(d) Using that decomposition calculate f(10000).
(e) Decide which values of f(0) f(1) f(2), will make the sequence f(n)

constant.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
This finishes Part II and with it the mathematical content of the book. The
strength of linear algebra has only been partially revealed in this book and I
hope that our readers, arriving at this point, will not feel totally content with
what they have seen and, for example, will try to understand the material of
Part III.
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Appendix

to make difficult things become easy,
is not easy

(Caterina Ottonello, 9 November 2004)

Problems with the computer

As was already said in the introduction, at the end of many sections we can
find exercises marked with the symbol @. In order to solve those problems
we suggested the use of a specific program which is geared to such calcula-
tions, namely the program CoCoA (see [Co]). The reader should not expect
an exhaustive description of this program. To be totally honest, I don’t want
to be exhaustive in this description. In fact, the goal of this appendix is only
that of inducing the reader to consult the web page

http://cocoa.dima.unige.it,

download the program CoCoA (which is, by the way, free - something much
appreciated by the folks of my region) and, with the help of a friend or of
the manual, learn to use it.

A simple way to start becoming familiar with CoCoA is to read the
story [R06] and the expository article [R01]. Naturally there are many other
programs which can be used, but in Genoa such a choice would be consid-
ered. . . traitorous. In order to avoid this danger we’ll see, in a bit, how to
use CoCoA to deal with a few specific examples.

Before beginning I would like to make a few remarks of a general nature.
Everything that you see written in special characters is precisely CoCoA
code, which means that it may be used also as input. The parts of the text
that begin with double dashes are simple comments that are ignored by the
program. Now let’s start with the first example.

Robbiano L.: Linear Algebra for everyone
c© Springer-Verlag Italia 2011
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Example 1. Solve, using CoCoA , the linear system⎧⎨
⎩

3x −2y +z = 8
3x −y +7

2 z = 57
−4x +10y −4

3
z = −71

We could solve it by hand, but let’s try to see how to solve this system using
a computer, in particular we will try to solve it with CoCoA that, in this case,
will only be used as a symbolic calculator. The first thing we have to do is
write the system in a language which CoCoA understands.

Set Indentation; -- write one polynomial per line

System :=
[
3x - 2y + z - 8,
3x - y + 7/2z - 57,
-4x + 10y - 4/3z + 71
];

To control the content of the variable System it is enough to write

System;

and you will get as output

[
3x - 2y + z - 8,
3x - y + 7/2z - 57,
-4x + 10y - 4/3z + 71]

-------------------------------

Moreover, in order not to always have to write System, which as a name
is expressive but a bit long, and in order to keep the input to the variable
System invariant, let’s give it another, shorter, name.

S := System;

At this point CoCoA knows that both S and System are the names of the
system with which we began. We can modify S as we like but System will
continue to be the name of the system given at the beginning.

Inasmuch as S is a list, the expressions S[1], S[2], S[3] represent (re-
spectively) the first, second and the third element of the list, corresponding
thus to the first, second and third equation. Now we will use some of the
rules of the game i.e. the following elementary operations.
(1) multiply a row by a non-zero constant: S[N] := (C)*S[N];
(2) add to a row a multiple of another: S[N] := S[N] + (C)*S[M];
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S[2] := S[2] + (-1)*S[1];
S; -- Now let’s see the output

[
3x - 2y + z - 8,
y + 5/2z - 49,
-4x + 10y - 4/3z + 71]

-------------------------------

S[1] := S[1] + 2*S[2];
S; -- Let’s see the output

[
3x + 6z - 106,
y + 5/2z - 49,
-4x + 10y - 4/3z + 71]

-------------------------------

S[1] := (1/3)*S[1];
S; -- Let’s see the output

[
x + 2z - 106/3,
y + 5/2z - 49,
-4x + 10y - 4/3z + 71]

-------------------------------

S[3] := S[3] + 4*S[1];
S; -- Let’s see the output

[
x + 2z - 106/3,
y + 5/2z - 49,
10y + 20/3z - 211/3]

-------------------------------

S[3] := S[3] - 10*S[2];
S; -- Let’s see the output

[
x + 2z - 106/3,
y + 5/2z - 49,
-55/3z + 1259/3]

-------------------------------
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S[3] := (-3/55)*S[3];
S; -- Let’s see the output

[
x + 2z - 106/3,
y + 5/2z - 49,
z - 1259/55]

-------------------------------

S[1] := S[1] - 2*S[3];
S; -- Let’s see the output

[
x + 1724/165,
y + 5/2z - 49,
z - 1259/55]

-------------------------------
S[2] := S[2] - 5/2*S[3];

The last output is the following

S;
[

x + 1724/165,
y + 181/22,
z - 1259/55]

-------------------------------

We have obtained an equivalent system which is much easier to solve. The
solution is thus (−1724

165
,−181

22
, 1259

55
). We can check it with CoCoA using the

function Eval that, as is indicated by its name, evaluates expressions. Recall
that while S is changed during a calculation, System always stays what it
was at the beginning.

Eval(System,[-1724/165,-181/22,1259/55]);
-- The output is the following

[
0,
0,
0]

-------------------------------

Now we are really convinced!

The next example shows CoCoA at work in finding a Cholesky decomposition
(see Section 5.4). In this example CoCoA will not be used only as a symbolic
calculator but will work at a higher level than in the preceding example.
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Example 2. Consider the following symmetric matrix

A =

⎛
⎝ 1 3 1

3 11 1
1 1 6

⎞
⎠

and let’s calculate its principal minors.

A := Mat([ [1,3,1],
[3,11,1],
[1,1,6] ]);

Det(Submat(A,[1],[1]));
Det(Submat(A,[1,2],[1,2]));
Det(A); -- The outputs are

1
-------------------------------
2
-------------------------------
6
-------------------------------

These minors are all positive, thus by Sylvester’s criterion (see Section 5.3)
the matrix is positive definite and, as a consequence, has a Cholesky decom-
position. We use elementary matrices to reduce all the elements of the first
row and column to zero, except for a11. The reader should notice the following
neat way to define elementary matrices.

E1 := Identity(3); E1[2,1] := -3; E1;
Mat([

[1, 0, 0],
[-3, 1, 0],
[0, 0, 1]

])
-------------------------------
E2 := Identity(3); E2[3,1] := -1; E2;
Mat([

[1, 0, 0],
[0, 1, 0],
[-1, 0, 1]

])
-------------------------------
A1 := (E2*E1) * A * Transposed(E2*E1);
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We get the following matrix A1

Mat([
[1, 0, 0],
[0, 2, -2],
[0, -2, 5]

])
-------------------------------

We use elementary matrices to reduce the elements of the second row and
column (except for a22) to zero.

E3 := Identity(3); E3[3,2] := 1; E3;
D := E3 * A1 * Transposed(E3);

We ask CoCoA to tell us what D is and to check

D;
Mat([

[1, 0, 0],
[0, 2, 0],
[0, 0, 3]

])
-------------------------------

D = E3*E2*E1*A*Transposed(E1)*Transposed(E2)*Transposed(E3);
TRUE;
-------------------------------

Let’s put

P := E3 *E2 *E1; TP := Transposed(P);
InvP := Inverse(P); InvTP := Inverse(TP);

and check that

A= InvP*D*InvTP;
TRUE
-------------------------------

Now we have to introduce the square roots of 2 and 3. How can we do that? In
CoCoA we cannot directly write

√
2 or

√
3, since it is not part of the language

of CoCoA and CoCoA wouldn’t understand those things. For now we have to
be content with the two symbols a, b. We’ll see how.

Use Q[a,b];
B := Mat([ [1,0,0],

[0,a,0],
[0,0,b] ]);

U := B*InvTP;



Appendix 201

We ask CoCoA who U and U tr are.

U;
Mat([

[1, 3, 1],
[0, a, -a],
[0, 0, b]

])
-------------------------------

TrU := Transposed(U); TrU;
Mat([

[1, 0, 0],
[3, a, 0],
[1, -a, b]

])
-------------------------------

The conclusion is that A = U tr U is the Cholesky decomposition where

U =

⎛
⎝1 3 1

0
√

2 −
√

2
0 0

√
3

⎞
⎠

It looks like we have cheated a little. But, in fact, we haven’t done anything
because we never used the fact that a, b represent

√
2,
√

3 and the real reason
for that is that we haven’t had to, up to now, multiply the symbols a, b.

But, if now we would like to check the result, we will have to teach CoCoA
to make the simplifications a2 = 2 and b2 = 3. We can teach CoCoA that by
using the following function, which CoCoA will understand because we will
write it in the CoCoA language. Let’s not ask too many questions about what
this means but rather let’s be content with the fact that it works (like when we
buy a television or a cell phone and we don’t ask ourselves how they work but
just learn how to use them). However, if you are not happy with that answer
then please head right away for the web page http://cocoa.dima.unige.it
and you’ll find all the explanations you want.

L := [a^2-2, b^2-3];

Define NR_Mat(M,L)
Return Mat([ [NR(Poly(X), L) | X In Riga] | Riga In M ]);

EndDefine;

A=NR_Mat(TrU*U, L);
TRUE
-------------------------------

In the end we get the answer TRUE and we can relax. It’s true that A = U tr U .
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The next example shows CoCoA at work in raising a matrix to a power.
This was the problem considered in the introduction to Chapter 8 and in
Section 8.3. This examples gives a practical way to deal with that problem.

Example 3. We want to raise the matrix A to the power 100000, where A
is

A =

⎛
⎝2 0 −3

1 1 −5
0 0 −1

⎞
⎠

And now let’s see CoCoA at work!

A := Mat([[2, 0, -3], [1, 1, -5], [0, 0, -1] ]);
I := Identity(3); Det := Det(x*I-A);
Det; Factor(Det);

This is the first step

x^3 - 2x^2 - x + 2
-------------------------------

[[x + 1, 1], [x - 1, 1], [x - 2, 1]]
-------------------------------

Thus −1, 1, 2 are the eigenvalues of A. Now let’s calculate the eigenspaces.

Use Q[x,y,z];
L1 := LinKer(-1*I-A);
L2 := LinKer(1*I-A);
L3 := LinKer(2*I-A);
L1;L2;L3;

[[1, 2, 1]]
-------------------------------

[[0, 1, 0]]
-------------------------------

[[1, 1, 0]]
-------------------------------

Thus, a basis formed by eigenvectors is F = (v1, v2, v3), where the three
vectors are v1 = (1, 2, 1), v2 = (0, 1, 0), v3 = (1, 1, 0). Now let’s write the
associated matrix ME

F , that we will call IP, and its inverse MF
E , which we

will call P .

IP := Transposed(BlockMatrix([[L1],[L2], [L3]])); IP;
Mat([

[1, 0, 1],
[2, 1, 1],
[1, 0, 0]

])
-------------------------------
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P := Inverse(IP); P;
P;
Mat([

[0, 0, 1],
[-1, 1, -1],
[1, 0, -1]

])
-------------------------------

Let’s check that A is diagonal
by using the matrix P

D := DiagonalMat([-1,1,2]);
A = IP*D*P;
-- TRUE
-------------------------------

The following function (which we will define in the CoCoA language) tells
CoCoA how to find the power of a diagonal matrix by simply asking it to find
the powers of all the entries on the main diagonal.

Define PowerDiag(M, Exp)
Return DiagonalMat([ M[I,I]^Exp | I In 1..Len(M) ]);

EndDefine;

Finally we will verify, experimentally, what was said in Section 8.3.

R := 100000;
Time U := IP*PowerDiag(D,R)*P;
-- Cpu time = 0.02 -- secondi

-------------------------------
Time PowA := A^R;
-- Cpu time = 10.29 -- secondi

-------------------------------

U=PowA;
TRUE
-------------------------------

The difference in the amount of time used is. . . monstrous. However, con-
gratulations are due to CoCoA who wasn’t the least bit frightened by having
to execute 100000 multiplications of type 3 matrices and even did it in a few
seconds. If, moreover, you looked carefully at some of the entries of U , for
example the one in position (1, 1), you’ll see that they are enormous whole
numbers. Would you really like to see u11? If you truly would, look ahead.
This is brought to you by CoCoA.
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What have we learned from this example? Surely we have learned some impor-
tant things. One of the things we have seen is that numbers can be very, very
large (the number above has 30103 digits, if you don’t believe me. . . count
them!). However, modern calculators have little difficulty dealing with such
numbers. We have also learned that you can get to the same result using
different roads. Sometimes one is simple but slow, sometimes another road is
much more complicated because it is based on non-trivial theoretical consid-
erations, but it is fast.

You will have to excuse me for the fact that I have contributed to the
deforestation of the planet by writing that enormous number above, but I
hope that the motivation and the conclusions that we draw from it are worth
the sacrifice. And what about the reader who would really like to see u12?
How many pages of output would we need for that? If that person were to
try and make the calculation with CoCoA they would have an interesting
surprise. . . but, perhaps if one thought a bit. . .

Now that we have gotten past the nuttiness of the preceding example,
let’s conclude this appendix with a more complex example which relates to
Exercise 9 in Chapter 8. Here you will get to see some truly noteworthy
characteristics of CoCoA.

Example 4. In Exercise 9 of Chapter 8 we were asked to verify that every
polynomial in one variable is the characteristic polynomial of some matrix.
Let’s see how CoCoA can help us with this problem. Let F be a polynomial in
one variable and the matrix we are looking for will be called Companion(F )
and we are going to create a CoCoA function which will give us the matrix if
we provide the polynomial F . This is how it is done.

Define Companion(F);
D := Deg(F);
Cf := Coefficients(-F,x);
T := Mat([Reversed(Tail(Cf))]);
M := MatConcatHor(Identity(D), Transposed(T));
Return Submat(M, 1..D, 2..(D+1));

EndDefine;

Now we define the characteristic matrix of the matrix Companion(F ) and we
will call it CharMat(F ).

Define CharMat(F);
D := Deg(F);
Id := Identity(D);
M := x*Id - Companion(F);
Return(M);

EndDefine;
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Let’s do an example. Let F = x6 − 15x4 + 8x3 − 1 and let’s ask CoCoA to
calculate the matrix Companion(F ).

F := x^6-15x^4+8x^3-1;
Companion(F);
Mat([

[0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, -8],
[0, 0, 0, 1, 0, 15],
[0, 0, 0, 0, 1, 0]

])
-------------------------------

Now let’s calculate CharMat(F ).

A := CharMat(F);
Mat([

[x, 0, 0, 0, 0, -1],
[-1, x, 0, 0, 0, 0],
[0, -1, x, 0, 0, 0],
[0, 0, -1, x, 0, 8],
[0, 0, 0, -1, x, -15],
[0, 0, 0, 0, -1, x]

])
-------------------------------

We know that the characteristic polynomial of the matrix Companion(F )
is the determinant of the matrix CharMat(F ). Thus, let’s verify that we
indeed do have an equality between F and the characteristic polynomial of
Companion(F ).

F=Det(CharMat(F));
TRUE
-------------------------------

Now the reader can continue with any example of a polynomial in one vari-
able. However, I probably should advise you not to take the degree of the
polynomial to be too big. . . even computers can get tired. . .

10 Computer Commandments
1 Always use the binary system

10 Never use the symbol 2



Conclusion?

The examples of Chapter 8 have confirmed the fact that the real symmetric
matrices have many incredible properties, e.g. they are similar to diagonal
matrices something that one cannot say, a priori, for matrices which are not
symmetric. However, what can we say about general matrices?

Usually we ended the chapters above with some questions, questions that
would be answered in succeeding chapters. But, the book is finished and thus
we will not be able to give answers to the question just posed. Mathematics,
like life, teaches us to ask questions and the search for answers generates
other questions and this steady stream of questions goes on for our whole
lives. For now I would suggest that the reader be content in knowing that
there is indeed an answer to the preceding question and that the tools used
to answer it are a little more complicated than the ones we have seen so far.
The words canonical form, Jordan canonical form, rational canonical form
are some of the words that are used in an answer.

But, the more difficult the questions the more challenging it is to find the
answers and mathematics is a true gymnasium in which to go beyond. Thus,
I will propose one final question: do you think that the clouds are a limit to
studying the heavens? Has the reading of this book given you the desire to
go beyond?

e v o i p e s á t e me t à s e p i o v e

(palindrome dedicated to the clouds
from Palindromes of (Lo)Renzo

by Lorenzo)
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